cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A336476 a(n) = gcd(A000593(n), A336475(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 12, 1, 2, 1, 2, 2, 4, 2, 2, 2, 1, 2, 4, 2, 2, 12, 2, 1, 12, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 1, 12, 2, 2, 4, 4, 2, 4, 2, 2, 12, 2, 2, 2, 1, 4, 12, 2, 2, 12, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 12, 2, 2, 6, 28, 2, 4, 2, 20, 2, 2, 3, 6, 1, 2, 12, 2, 2, 24
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Comments

All odd terms k in A001599 (Ore's Harmonic numbers) satisfy a(k) = A336475(k).

Crossrefs

Programs

  • PARI
    A000593(n) = sigma(n>>valuation(n, 2));
    A336475(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,(1+f[i,2]) * (f[i,1]^f[i,2]))); };
    A336476(n) = gcd(A000593(n), A336475(n));

Formula

a(n) = gcd(A000593(n), A336475(n)).
a(n) = A324121(A000265(n)).

A324395 a(n) = A017666(A005940(1+n)), where A005940 is the Doudna sequence and A017666(n) = n/gcd(n,sigma(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 9, 8, 7, 5, 5, 3, 25, 6, 27, 16, 11, 7, 21, 10, 35, 5, 15, 2, 49, 50, 75, 36, 125, 9, 81, 32, 13, 11, 11, 1, 55, 7, 63, 4, 77, 35, 35, 5, 175, 5, 9, 12, 121, 98, 49, 100, 245, 25, 225, 24, 343, 125, 125, 27, 625, 54, 243, 64, 17, 13, 39, 11, 65, 11, 33, 7, 13, 55, 55, 3, 275, 21, 189, 40, 143, 77, 77, 5, 385, 35, 105, 1, 539
Offset: 0

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    A324395(n) = { my(m1=1,m2=1,p=2,mp=p*p); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, m1 *= p; if(3==(n%4),mp *= p,m2 *= (mp-1)/(p-1))); n>>=1); m1/gcd(m1,m2); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A017666(n) = (n/gcd(n, sigma(n)));
    A324395(n) = A017666(A005940(1+n));

Formula

a(n) = A017666(A005940(1+n)) = A005940(1+n) / A324394(n).
Previous Showing 11-12 of 12 results.