cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A351559 a(n) = A048675(gcd(sigma(n), A019565(n))).

Original entry on oeis.org

0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 3, 8, 9, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 0, 10, 1, 8, 5, 2, 1, 0, 1, 2, 3, 32, 1, 6, 1, 0, 9, 2, 1, 8, 33, 2, 3, 0, 0, 2, 3, 0, 1, 6, 3, 0, 1, 2, 3, 8, 1, 2, 33, 0, 1, 2, 65, 0, 1, 2, 3, 0, 1, 2, 1, 12, 1, 10, 5, 0, 16, 2, 3, 0, 1, 18, 7, 0, 1, 2, 9, 8, 1, 2, 7, 0, 1, 2, 35, 0, 65, 2, 33
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[# == 1, 0, Total[#2*2^PrimePi[#1] & @@@ FactorInteger[#]]/2] &@ GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 103}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A351559(n) = A048675(gcd(sigma(n), A019565(n)));

Formula

a(n) = A048675(A351557(n)) = A048675(gcd(sigma(n), A019565(n))).
a(n) = n AND A351560(n), where AND is bitwise-and, A004198.

A324646 a(n) = gcd(n, A276086(n-1)).

Original entry on oeis.org

1, 2, 3, 2, 1, 6, 1, 2, 3, 10, 1, 6, 1, 2, 15, 2, 1, 18, 1, 10, 3, 2, 1, 6, 25, 2, 3, 2, 1, 30, 1, 2, 3, 2, 7, 18, 1, 2, 3, 10, 1, 42, 1, 2, 15, 2, 1, 6, 7, 50, 3, 2, 1, 18, 5, 14, 3, 2, 1, 30, 1, 2, 21, 2, 1, 6, 1, 2, 3, 70, 1, 18, 1, 2, 75, 2, 7, 6, 1, 10, 3, 2, 1, 42, 5, 2, 3, 2, 1, 90, 7, 2, 3, 2, 1, 6, 1, 98, 3, 10, 1, 6, 1, 2, 105
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2019

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324646(n) = gcd(n,A276086(n-1));

Formula

a(n) = gcd(n, A276086(n-1)).
a(A002110(n)) = A002110(n) for all n >= 0.

A351557 a(n) = gcd(sigma(n), A019565(n)).

Original entry on oeis.org

1, 3, 2, 1, 2, 3, 2, 1, 1, 3, 6, 7, 14, 3, 6, 1, 2, 3, 2, 1, 2, 3, 6, 1, 1, 21, 2, 7, 10, 3, 2, 1, 2, 3, 6, 13, 2, 15, 2, 1, 14, 3, 2, 7, 26, 3, 6, 1, 1, 3, 6, 1, 2, 15, 6, 1, 2, 3, 6, 7, 2, 3, 26, 1, 2, 3, 34, 1, 2, 3, 6, 1, 2, 3, 2, 35, 2, 21, 10, 1, 11, 3, 6, 1, 2, 33, 30, 1, 2, 3, 14, 7, 2, 3, 30, 1, 2, 3, 78
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 99}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A351557(n) = gcd(sigma(n), A019565(n));

Formula

a(n) = gcd(A000203(n), A019565(n)) = gcd(A080398(n), A019565(n)).
a(n) = A007947(a(n)).
a(n) = A019565(A351559(n)).

A355456 Greatest common divisor of sigma(n), A003961(n), and A276086(n).

Original entry on oeis.org

1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 5, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 9, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 5, 3, 1, 7, 1, 3, 1, 1, 7, 1, 1, 3, 1, 3, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2022

Keywords

Crossrefs

Cf. A000203, A003961, A276086, A324644, A342671, A355442, A355002 (terms k such that a(k) shares a prime factor with k).
Cf. also A323653, A351459.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    A355456(n) = gcd(sigma(n), A355442(n));

Formula

a(n) = gcd(A000203(n), A355442(n)).
a(n) = gcd(A324644(n), A342671(n)) = gcd(A276086(n), A342671(n)) = gcd(A003961(n), A324644(n)).

A379489 a(n) = gcd(n,A003961(n))*gcd(sigma(n),A276086(n)) - gcd(n,A276086(n))*gcd(sigma(n),A003961(n)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 0, -1, 0, 5, 0, 1, 12, -2, -6, 5, 2, 1, 0, 15, 0, 17, 0, 9, -102, -1, 6, 5, 0, -24, 0, -5, 0, 29, 12, 1, 12, 3, 6, 35, 62, 1, 12, 11, 0, 41, -18, 1, 18, 15, 6, 5, 2, -6, -72, 3, 6, 17, 0, -3, -6, -5, 42, 29, 84, 1, 0, -19, 0, 35, 0, 1, 12, 3, -42, 17, 30, 1, 0, -65, 34, 59, 18, 9, -12, -2, 60, 41, 14, -3, 0, 15
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2025

Keywords

Crossrefs

Cf. A000203, A003961, A276086, A379486 (positions of 0's), A379487, A379488.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A379489(n) = { my(s=sigma(n),x=A003961(n),y=A276086(n)); (gcd(n,x)*gcd(s,y))-(gcd(n,y)*gcd(s,x)); };

Formula

a(n) = A379487(n) - A379488(n) = A322361(n)*A324644(n) - A324198(n)*A342671(n).

A324534 The smallest common prime factor of sigma(n) and A276086(n), or 1 if no such prime exists.

Original entry on oeis.org

1, 3, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 5, 1, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 1, 3, 2, 7, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 5, 2, 3, 2, 5, 2, 7, 2, 3, 1, 3, 2, 7, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 7, 2, 3, 2, 7, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2019

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A324534(n) = A020639(gcd(sigma(n),A276086(n)));

Formula

a(n) = A020639(A324644(n)) = A020639(gcd(A000203(n),A276086(n))).

A369445 Numerator of sigma(n) / A276086(n), where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 2, 7, 1, 12, 4, 1, 13, 2, 2, 28, 7, 8, 4, 31, 1, 39, 2, 14, 16, 4, 4, 12, 31, 14, 4, 56, 1, 72, 16, 3, 8, 6, 8, 13, 19, 4, 4, 2, 1, 96, 22, 4, 13, 8, 8, 124, 57, 31, 12, 14, 3, 24, 36, 8, 8, 2, 2, 24, 31, 32, 52, 127, 2, 144, 34, 6, 16, 16, 4, 39, 37, 38, 62, 4, 16, 24, 8, 62, 121, 2, 2, 32, 54, 44, 4, 4, 1, 234, 8, 8, 64
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2024

Keywords

Crossrefs

Cf. A000203, A276086, A324644, A369446 (denominators), A369261.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A369445(n) = { my(s=sigma(n)); (s/gcd(s,A276086(n))); };

Formula

a(n) = A000203(n) / A324644(n).

A379491 Multiperfect numbers k for which gcd(k,A003961(k))*gcd(sigma(k),A276086(k)) is equal to gcd(k,A276086(k))*gcd(sigma(k),A003961(k)), where A003961(n) is fully multiplicative with a(prime(i)) = prime(i+1), and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 6, 28, 496, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 8589869056, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2025

Keywords

Crossrefs

Intersection of A007691 and A379486.
Subsequences: A323653 (conjectured), A336702 (apart from any hypothetical odd terms > 1).

Programs

A324645 a(n) = gcd(d(n), A276086(n)), where d(n) gives the number of divisors (A000005).

Original entry on oeis.org

1, 1, 2, 3, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 5, 2, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 6, 1, 2, 5, 1, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 7, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 6, 3, 2, 1, 2, 5, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 6, 9, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2019

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324645(n) = gcd(numdiv(n),A276086(n));

Formula

a(n) = gcd(A000005(n), A276086(n)).

A355002 Numbers k that share a prime factor with A355456(k).

Original entry on oeis.org

135, 140, 285, 435, 455, 675, 700, 855, 885, 910, 945, 980, 1120, 1185, 1305, 1335, 1365, 1425, 1435, 1485, 1540, 1635, 1755, 1820, 1995, 2085, 2175, 2235, 2275, 2295, 2380, 2565, 2574, 2655, 2660, 2685, 2870, 2905, 2985, 3045, 3105, 3135, 3185, 3220, 3311, 3375, 3395, 3435, 3500, 3555, 3585, 3640, 3705, 3915, 4005
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2022

Keywords

Comments

Numbers k such that A324198(k) and A342671(k) are not relatively prime.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    A355456(n) = gcd(sigma(n), A355442(n));
    isA355002(n) = (1!=gcd(n,A355456(n)));
Previous Showing 11-20 of 23 results. Next