cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A325123 Number of divisible pairs of positive integers up to n with no binary carries.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 9, 9, 12, 12, 13, 13, 17, 17, 19, 19, 22, 22, 23, 23, 28, 28, 29, 29, 31, 31, 32, 32, 37, 37, 39, 39, 44, 44, 45, 45, 50, 50, 52, 52, 54, 54, 55, 55, 62, 62, 64, 64, 66, 66, 68, 68, 72, 72, 73, 73, 76, 76, 77, 77, 83, 83, 85, 85
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap.
a(2k+1) = a(2k), since an odd number and any divisor will overlap in the last digit. Additionally, a(2k+2) > a(2k+1) because the pair {1,2k+2} is always valid. Therefore, every term appears exactly twice. - Charlie Neder, Apr 02 2019

Examples

			The a(2) = 1 through a(11) = 9 pairs:
  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}  {1,2}   {1,2}
                {1,4}  {1,4}  {1,4}  {1,4}  {1,4}  {1,4}  {1,4}   {1,4}
                {2,4}  {2,4}  {1,6}  {1,6}  {1,6}  {1,6}  {1,6}   {1,6}
                              {2,4}  {2,4}  {1,8}  {1,8}  {1,8}   {1,8}
                                            {2,4}  {2,4}  {2,4}   {2,4}
                                            {2,8}  {2,8}  {2,8}   {2,8}
                                            {4,8}  {4,8}  {4,8}   {4,8}
                                                          {1,10}  {1,10}
                                                          {5,10}  {5,10}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Tuples[Range[n],2],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]=={}&]],{n,0,20}]

A325100 Heinz numbers of strict integer partitions with no binary carries.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 41, 42, 43, 47, 53, 57, 58, 59, 61, 67, 69, 71, 73, 74, 79, 83, 86, 89, 95, 97, 101, 103, 106, 107, 109, 111, 113, 114, 122, 123, 127, 131, 133, 137, 139, 142, 149, 151, 157, 158, 159
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices have no carries. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
  11: {5}
  13: {6}
  14: {1,4}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  26: {1,6}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  38: {1,8}
  41: {13}
  42: {1,2,4}
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[100],SquareFreeQ[#]&&stableQ[PrimePi/@First/@FactorInteger[#],Intersection[binpos[#1],binpos[#2]]!={}&]&]

A325124 Number of divisible pairs of positive integers up to n with at least one binary carry.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 10, 12, 13, 16, 18, 20, 23, 25, 28, 32, 33, 35, 39, 41, 44, 48, 51, 53, 56, 59, 62, 66, 70, 72, 79, 81, 82, 86, 88, 92, 96, 98, 101, 105, 108, 110, 116, 118, 122, 128, 131, 133, 136, 139, 143, 147, 151, 153, 159, 163, 167, 171, 174, 176, 185
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap.

Examples

			The a(1) = 1 through a(8) = 13 pairs:
  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)
         (2,2)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)
                (2,2)  (2,2)  (1,5)  (1,5)  (1,5)  (1,5)
                (3,3)  (3,3)  (2,2)  (2,2)  (1,7)  (1,7)
                       (4,4)  (3,3)  (2,6)  (2,2)  (2,2)
                              (4,4)  (3,3)  (2,6)  (2,6)
                              (5,5)  (3,6)  (3,3)  (3,3)
                                     (4,4)  (3,6)  (3,6)
                                     (5,5)  (4,4)  (4,4)
                                     (6,6)  (5,5)  (5,5)
                                            (6,6)  (6,6)
                                            (7,7)  (7,7)
                                                   (8,8)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Tuples[Range[n],2],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}]

Formula

a(n) = A307230(n) + n.

A325120 Sum of binary lengths of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 3, 5, 4, 4, 5, 4, 4, 5, 4, 4, 6, 5, 4, 5, 4, 5, 5, 4, 5, 6, 4, 5, 5, 5, 4, 6, 4, 5, 6, 5, 4, 6, 6, 5, 5, 5, 5, 7, 5, 6, 6, 5, 5, 6, 5, 5, 7, 6, 5, 6, 5, 5, 6, 6, 5, 7, 5, 5, 6, 6, 6, 6, 5, 6, 8, 5, 5, 7, 5, 5, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

The binary length of n is the number of digits in its binary representation. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]*IntegerLength[PrimePi[pr[[1]]],2],{pr,FactorInteger[n]}],{n,100}]

Formula

Totally additive with a(prime(n)) = A070939(n).

A325121 Sum of binary digits of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 2, 3, 2, 2, 3, 4, 3, 3, 1, 4, 2, 3, 2, 4, 4, 3, 3, 3, 2, 4, 3, 5, 3, 4, 3, 4, 2, 2, 3, 5, 3, 3, 3, 4, 4, 3, 4, 5, 2, 5, 4, 4, 1, 4, 4, 4, 2, 3, 2, 5, 2, 4, 3, 6, 4, 4, 3, 5, 3, 4, 2, 5, 3, 3, 5, 3, 3, 4, 3, 6, 4, 4, 4, 4, 5, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

The sum of binary digits of an integer is the number of 1's in its binary representation. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

  • Mathematica
    Table[Sum[pr[[2]]*DigitCount[PrimePi[pr[[1]]],2,1],{pr,FactorInteger[n]}],{n,100}]

Formula

Totally additive with a(prime(n)) = A000120(n).

A325122 Sum of binary digits of the prime indices of n, minus Omega(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 0, 1, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 3, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 1, 1, 1, 2, 0, 0, 2, 1, 2, 2, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 2, 1, 0, 2, 3, 0, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

The sum of binary digits of an integer is the number of 1's in its binary representation. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Positions of zeros are A318400.
Other totally additive sequences: A056239, A302242, A318994, A318995, A325033, A325034, A325120, A325121.

Programs

  • Mathematica
    Table[Sum[pr[[2]]*(DigitCount[PrimePi[pr[[1]]],2,1]-1),{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]

Formula

Totally additive with a(prime(n)) = A048881(n).

A307230 Number of divisible pairs of distinct positive integers up to n with at least one binary carry.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 5, 7, 8, 9, 11, 12, 14, 17, 17, 18, 21, 22, 24, 27, 29, 30, 32, 34, 36, 39, 42, 43, 49, 50, 50, 53, 54, 57, 60, 61, 63, 66, 68, 69, 74, 75, 78, 83, 85, 86, 88, 90, 93, 96, 99, 100, 105, 108, 111, 114, 116, 117, 125, 126, 128, 133, 133
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

Two positive integers are divisible if the first divides the second, and have a binary carry if the positions of 1's in their reversed binary expansion overlap.

Examples

			The a(3) = 1 through a(12) = 11 pairs:
  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}  {1,3}   {1,3}   {1,3}
                {1,5}  {1,5}  {1,5}  {1,5}  {1,5}  {1,5}   {1,5}   {1,5}
                       {2,6}  {1,7}  {1,7}  {1,7}  {1,7}   {1,7}   {1,7}
                       {3,6}  {2,6}  {2,6}  {1,9}  {1,9}   {1,9}   {1,9}
                              {3,6}  {3,6}  {2,6}  {2,6}   {2,6}   {2,6}
                                            {3,6}  {3,6}   {3,6}   {3,6}
                                            {3,9}  {3,9}   {3,9}   {3,9}
                                                   {2,10}  {1,11}  {1,11}
                                                           {2,10}  {2,10}
                                                                   {4,12}
                                                                   {6,12}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{2}],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}]

Formula

a(n) = A325124(n) - n.
Previous Showing 11-17 of 17 results.