cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A352518 Numbers > 1 that are not a prime power and whose prime indices and exponents are all themselves prime numbers.

Original entry on oeis.org

225, 675, 1089, 1125, 2601, 3025, 3267, 3375, 6075, 7225, 7803, 8649, 11979, 15125, 15129, 24025, 25947, 27225, 28125, 29403, 30375, 31329, 33275, 34969, 35937, 36125, 40401, 42025, 44217, 45387, 54675, 62001, 65025, 70227, 81675, 84375, 87025, 93987
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices (not factors) begin:
     225: {2,2,3,3}
     675: {2,2,2,3,3}
    1089: {2,2,5,5}
    1125: {2,2,3,3,3}
    2601: {2,2,7,7}
    3025: {3,3,5,5}
    3267: {2,2,2,5,5}
    3375: {2,2,2,3,3,3}
    6075: {2,2,2,2,2,3,3}
    7225: {3,3,7,7}
    7803: {2,2,2,7,7}
    8649: {2,2,11,11}
   11979: {2,2,5,5,5}
   15125: {3,3,3,5,5}
   15129: {2,2,13,13}
   24025: {3,3,11,11}
   25947: {2,2,2,11,11}
   27225: {2,2,3,3,5,5}
   28125: {2,2,3,3,3,3,3}
For example, 7803 = prime(1)^3 prime(4)^2.
		

Crossrefs

These partitions are counted by A352493.
This is the restriction of A346068 to numbers that are not a prime power.
The prime-power version is A352519, counted by A230595.
A000040 lists the primes.
A000961 lists prime powers.
A001694 lists powerful numbers, counted by A007690.
A038499 counts partitions of prime length.
A053810 lists all numbers p^q for p and q prime, counted by A001221.
A056166 = prime exponents are all prime, counted by A055923.
A076610 = prime indices are all prime, counted by A000607, powerful A339218.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A257994 counts prime indices that are themselves prime, nonprime A330944.
A325131 = disjoint indices from exponents, counted by A114639.

Programs

  • Mathematica
    Select[Range[10000],!PrimePowerQ[#]&& And@@PrimeQ/@PrimePi/@First/@FactorInteger[#]&& And@@PrimeQ/@Last/@FactorInteger[#]&]

Formula

Sum_{n>=1} 1/a(n) = (Product_{p prime-indexed prime} (1 + Sum_{q prime} 1/p^q)) - (Sum_{p prime-indexed prime} Sum_{q prime} 1/p^q) - 1 = 0.0106862606... . - Amiram Eldar, Aug 04 2024

A352519 Numbers of the form prime(p)^q where p and q are primes. Prime powers whose prime index and exponent are both prime.

Original entry on oeis.org

9, 25, 27, 121, 125, 243, 289, 961, 1331, 1681, 2187, 3125, 3481, 4489, 4913, 6889, 11881, 16129, 24649, 29791, 32041, 36481, 44521, 58081, 68921, 76729, 78125, 80089, 109561, 124609, 134689, 160801, 161051, 177147, 185761, 205379, 212521, 259081, 299209
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

Alternatively, numbers of the form prime(prime(i))^prime(j) for some positive integers i, j.

Examples

			The terms together with their prime indices begin:
      9: {2,2}
     25: {3,3}
     27: {2,2,2}
    121: {5,5}
    125: {3,3,3}
    243: {2,2,2,2,2}
    289: {7,7}
    961: {11,11}
   1331: {5,5,5}
   1681: {13,13}
   2187: {2,2,2,2,2,2,2}
   3125: {3,3,3,3,3}
   3481: {17,17}
   4489: {19,19}
   4913: {7,7,7}
   6889: {23,23}
  11881: {29,29}
  16129: {31,31}
  24649: {37,37}
  29791: {11,11,11}
		

Crossrefs

Numbers of the form p^q for p and q prime are A053810, counted by A001221.
These partitions are counted by A230595.
This is the prime power case of A346068.
For numbers that are not a prime power we have A352518, counted by A352493.
A000040 lists the primes.
A000961 lists prime powers.
A001597 lists perfect powers.
A001694 lists powerful numbers, counted by A007690.
A056166 = prime exponents are all prime, counted by A055923.
A076610 = prime indices are all prime, counted by A000607, powerful A339218.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A164336 lists all possible power-towers of prime numbers.
A257994 counts prime indices that are themselves prime, nonprime A330944.
A325131 = disjoint indices from exponents, counted by A114639.

Programs

  • Maple
    N:= 10^7: # for terms <= N
    M:=numtheory:-pi(numtheory:-pi(isqrt(N))):
    PP:= {seq(ithprime(ithprime(i)),i=1..M)}:
    R:= NULL:
    for p in PP do
      q:= 1:
      do
        q:= nextprime(q);
        t:= p^q;
        if t > N then break fi;
        R:= R, t;
      od;
    od:
    sort([R]); # Robert Israel, Dec 08 2022
  • Mathematica
    Select[Range[10000],PrimePowerQ[#]&&MatchQ[FactorInteger[#],{{?(PrimeQ[PrimePi[#]]&),k?PrimeQ}}]&]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A352519(n):
        def f(x): return int(n+x-sum(primepi(primepi(integer_nthroot(x,p)[0])) for p in primerange(x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

A353396 Number of integer partitions of n whose Heinz number has prime shadow equal to the product of prime shadows of its parts.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 3, 1, 3, 4, 3, 7, 5, 9, 8, 12, 15, 15, 20, 21, 25, 31, 33, 38, 42, 46, 56, 61, 67, 78, 76, 96, 100, 114, 131, 130, 157, 157, 185, 200, 214, 236, 253, 275, 302, 333, 351, 386, 408, 440, 486, 515, 564, 596, 633, 691, 734, 800, 854, 899, 964
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The a(8) = 1 through a(14) = 9 partitions (A..D = 10..13):
  (53)  (72)    (73)    (B)     (75)     (D)      (B3)
        (621)   (532)   (A1)    (651)    (B2)     (752)
        (4221)  (631)   (4331)  (732)    (A21)    (761)
                (4411)          (6321)   (43321)  (A31)
                                (6411)   (44311)  (C11)
                                (43221)           (6521)
                                (44211)           (9221)
                                                  (54221)
                                                  (64211)
		

Crossrefs

The LHS (prime shadow) is A181819, with an inverse A181821.
The RHS (product of prime shadows) is A353394, first appearances A353397.
These partitions are ranked by A353395.
A related comparison is A353398, ranked by A353399.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A239455 counts Look-and-Say partitions, ranked by A351294.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Table[Length[Select[IntegerPartitions[n],Times@@red/@#==red[Times@@Prime/@#]&]],{n,0,15}]

A353699 Heinz numbers of integer partitions whose product equals their length.

Original entry on oeis.org

2, 6, 20, 36, 56, 176, 240, 416, 864, 1088, 1344, 2432, 3200, 5888, 8448, 14848, 23040, 31744, 35840, 39936, 75776, 167936, 208896, 331776, 352256, 450560, 516096, 770048, 802816, 933888, 1736704, 2457600, 3866624, 4259840, 4521984, 7995392, 12976128, 17563648
Offset: 1

Views

Author

Gus Wiseman, May 19 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      2: {1}
      6: {1,2}
     20: {1,1,3}
     36: {1,1,2,2}
     56: {1,1,1,4}
    176: {1,1,1,1,5}
    240: {1,1,1,1,2,3}
    416: {1,1,1,1,1,6}
    864: {1,1,1,1,1,2,2,2}
   1088: {1,1,1,1,1,1,7}
   1344: {1,1,1,1,1,1,2,4}
   2432: {1,1,1,1,1,1,1,8}
   3200: {1,1,1,1,1,1,1,3,3}
   5888: {1,1,1,1,1,1,1,1,9}
   8448: {1,1,1,1,1,1,1,1,2,5}
  14848: {1,1,1,1,1,1,1,1,1,10}
  23040: {1,1,1,1,1,1,1,1,1,2,2,3}
  31744: {1,1,1,1,1,1,1,1,1,1,11}
  35840: {1,1,1,1,1,1,1,1,1,1,3,4}
  39936: {1,1,1,1,1,1,1,1,1,1,2,6}
  75776: {1,1,1,1,1,1,1,1,1,1,1,12}
		

Crossrefs

Length is A001222, counted by A008284, distinct A001221.
Product is A003963, counted by A339095, firsts A318871.
A similar sequence is A353503, counted by A353506.
These partitions are counted by A353698.
A005361 gives product of signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A353394 gives product of shadows of prime indices, firsts A353397.

Programs

  • Mathematica
    Select[Range[1000],Times@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]^k]==PrimeOmega[#]&]
Previous Showing 21-24 of 24 results.