cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A307734 Smallest k such that the adjusted frequency depth of k! is n, and 0 if there is no such k.

Original entry on oeis.org

1, 2, 0, 3, 4, 5, 7, 26, 65, 942, 24147
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
Conjecture: this sequence has infinitely many nonzero terms.

Examples

			Column n is the sequence of images under A181819 starting with a(n)!:
  -  2  -  6  24  120  5040  403291461126605635584000000
           4  10  20   84    11264760
           3  4   6    12    240
              3   4    6     28
                  3    4     6
                       3     4
                             3
		

Crossrefs

Essentially the same as A325410.
a(n) is zero or the first position of n in A325272.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

A325265 Numbers with sum of omega-sequence > 4.

Original entry on oeis.org

6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their omega-sequences begins:
   6: 2 2 1       46: 2 2 1         80: 5 2 2 1       112: 5 2 2 1
  10: 2 2 1       48: 5 2 2 1       81: 4 1           114: 3 3 1
  12: 3 2 2 1     50: 3 2 2 1       82: 2 2 1         115: 2 2 1
  14: 2 2 1       51: 2 2 1         84: 4 3 2 2 1     116: 3 2 2 1
  15: 2 2 1       52: 3 2 2 1       85: 2 2 1         117: 3 2 2 1
  16: 4 1         54: 4 2 2 1       86: 2 2 1         118: 2 2 1
  18: 3 2 2 1     55: 2 2 1         87: 2 2 1         119: 2 2 1
  20: 3 2 2 1     56: 4 2 2 1       88: 4 2 2 1       120: 5 3 2 2 1
  21: 2 2 1       57: 2 2 1         90: 4 3 2 2 1     122: 2 2 1
  22: 2 2 1       58: 2 2 1         91: 2 2 1         123: 2 2 1
  24: 4 2 2 1     60: 4 3 2 2 1     92: 3 2 2 1       124: 3 2 2 1
  26: 2 2 1       62: 2 2 1         93: 2 2 1         126: 4 3 2 2 1
  28: 3 2 2 1     63: 3 2 2 1       94: 2 2 1         128: 7 1
  30: 3 3 1       64: 6 1           95: 2 2 1         129: 2 2 1
  32: 5 1         65: 2 2 1         96: 6 2 2 1       130: 3 3 1
  33: 2 2 1       66: 3 3 1         98: 3 2 2 1       132: 4 3 2 2 1
  34: 2 2 1       68: 3 2 2 1       99: 3 2 2 1       133: 2 2 1
  35: 2 2 1       69: 2 2 1        100: 4 2 1         134: 2 2 1
  36: 4 2 1       70: 3 3 1        102: 3 3 1         135: 4 2 2 1
  38: 2 2 1       72: 5 2 2 1      104: 4 2 2 1       136: 4 2 2 1
  39: 2 2 1       74: 2 2 1        105: 3 3 1         138: 3 3 1
  40: 4 2 2 1     75: 3 2 2 1      106: 2 2 1         140: 4 3 2 2 1
  42: 3 3 1       76: 3 2 2 1      108: 5 2 2 1       141: 2 2 1
  44: 3 2 2 1     77: 2 2 1        110: 3 3 1         142: 2 2 1
  45: 3 2 2 1     78: 3 3 1        111: 2 2 1         143: 2 2 1
		

Crossrefs

Positions of terms > 4 in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],Total[omseq[#]]>4&]

A325256 Number of normal multisets of size n whose adjusted frequency depth is the maximum for multisets of that size.

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 12, 12, 44, 128, 228, 422, 968, 1750, 420, 2100
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
The adjusted frequency depth of a multiset is 0 if the multiset is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the multiset {1,1,2,2,3} has adjusted frequency depth 5 because we have {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}. The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n).

Examples

			The a(1) = 1 through a(7) = 12 multisets:
  {1}  {12}  {112}  {1123}  {11123}  {111123}  {1112234}
             {122}  {1223}  {11223}  {111234}  {1112334}
                    {1233}  {11233}  {112345}  {1112344}
                            {11234}  {122223}  {1122234}
                            {12223}  {122234}  {1123334}
                            {12233}  {122345}  {1123444}
                            {12234}  {123333}  {1222334}
                            {12333}  {123334}  {1222344}
                            {12334}  {123345}  {1223334}
                            {12344}  {123444}  {1223444}
                                     {123445}  {1233344}
                                     {123455}  {1233444}
		

Crossrefs

Programs

  • Mathematica
    nn=10;
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    mfdm=Table[Max@@fdadj/@allnorm[n],{n,0,nn}];
    Table[Length[Select[allnorm[n],fdadj[#]==mfdm[[n+1]]&]],{n,0,nn}]
Previous Showing 31-33 of 33 results.