cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A325759 Number of distinct frequencies in the frequency span of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 3, 2, 1, 2, 1, 3, 3, 3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 3, 3, 4, 2, 1, 3, 3, 3, 1, 4, 1, 3, 3, 3, 1, 3, 2, 3, 3, 3, 1, 3, 4, 4, 3, 3, 1, 3, 1, 3, 3, 2, 4, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 4, 4, 1, 4, 2, 3, 1, 3, 4, 3, 3
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer n is the frequency span of its prime indices (row n of A296150).

Crossrefs

Row lengths of A325758.
Number of distinct entries in row n of A325757.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    freqspan[ptn_]:=If[Length[ptn]<=1,ptn,Sort[Join[ptn,freqspan[Sort[Length/@Split[ptn]]]]]];
    Table[Length[Union[freqspan[primeMS[n]]]],{n,100}]

A325760 Heinz number of the frequency span of n.

Original entry on oeis.org

1, 2, 3, 12, 5, 72, 7, 40, 27, 120, 11, 864, 13, 168, 180, 112, 17, 1296, 19, 1440, 252, 264, 23, 2880, 75, 312, 135, 2016, 29, 1200, 31, 352, 396, 408, 420, 972, 37, 456, 468, 4800, 41, 1680, 43, 3168, 3240, 552, 47, 8064, 147, 3600, 612, 3744, 53, 6480, 660
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
We define the frequency span of an integer partition to be the partition itself if it has no or only one block, and otherwise it is the multiset union of the partition and the frequency span of its multiplicities. For example, the frequency span of (3,2,2,1) is {1,2,2,3} U {1,1,2} U {1,2} U {1,1} U {2} = {1,1,1,1,1,1,2,2,2,2,2,3}. The frequency span of a positive integer n is the frequency span of its prime indices (row n of A296150).

Crossrefs

Row-products of A325277.
The prime indices of a(n) are row n of A325757.
The unsorted prime signature of a(n) is row n of A325758.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    freqspan[ptn_]:=If[Length[ptn]<=1,ptn,Sort[Join[ptn,freqspan[Sort[Length/@Split[ptn]]]]]];
    Table[Times@@Prime/@freqspan[primeMS[n]],{n,30}]

A325261 Numbers whose omega-sequence does not cover an initial interval of positive integers.

Original entry on oeis.org

8, 16, 24, 27, 30, 32, 36, 40, 42, 48, 54, 56, 64, 66, 70, 72, 78, 80, 81, 88, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 125, 128, 130, 135, 136, 138, 144, 152, 154, 160, 162, 165, 168, 170, 174, 176, 180, 182, 184, 186, 189, 190, 192, 195, 196, 200
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their omega sequences begins:
    8: 3->1           108: 5->2->2->1        189: 4->2->2->1
   16: 4->1           110: 3->3->1           190: 3->3->1
   24: 4->2->2->1     112: 5->2->2->1        192: 7->2->2->1
   27: 3->1           114: 3->3->1           195: 3->3->1
   30: 3->3->1        120: 5->3->2->2->1     196: 4->2->1
   32: 5->1           125: 3->1              200: 5->2->2->1
   36: 4->2->1        128: 7->1              208: 5->2->2->1
   40: 4->2->2->1     130: 3->3->1           210: 4->4->1
   42: 3->3->1        135: 4->2->2->1        216: 6->2->1
   48: 5->2->2->1     136: 4->2->2->1        222: 3->3->1
   54: 4->2->2->1     138: 3->3->1           224: 6->2->2->1
   56: 4->2->2->1     144: 6->2->2->1        225: 4->2->1
   64: 6->1           152: 4->2->2->1        230: 3->3->1
   66: 3->3->1        154: 3->3->1           231: 3->3->1
   70: 3->3->1        160: 6->2->2->1        232: 4->2->2->1
   72: 5->2->2->1     162: 5->2->2->1        238: 3->3->1
   78: 3->3->1        165: 3->3->1           240: 6->3->2->2->1
   80: 5->2->2->1     168: 5->3->2->2->1     243: 5->1
   81: 4->1           170: 3->3->1           246: 3->3->1
   88: 4->2->2->1     174: 3->3->1           248: 4->2->2->1
   96: 6->2->2->1     176: 5->2->2->1        250: 4->2->2->1
  100: 4->2->1        180: 5->3->2->2->1     252: 5->3->2->2->1
  102: 3->3->1        182: 3->3->1           255: 3->3->1
  104: 4->2->2->1     184: 4->2->2->1        256: 8->1
  105: 3->3->1        186: 3->3->1           258: 3->3->1
		

Crossrefs

Complement of A325251.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],!normQ[omseq[#]]&]

A325267 Number of integer partitions of n with omicron 2.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 7, 12, 17, 24, 33, 44, 57, 76, 100, 129, 168, 214, 282, 355, 462, 586, 755, 937, 1202, 1493, 1900, 2349, 2944, 3621, 4520, 5514, 6813, 8298, 10150, 12240, 14918, 17931, 21654, 25917, 31081, 37029, 44256, 52474, 62405, 73724, 87378, 102887
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A304634.
The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. We define the omicron of an integer partition to be 0 if the partition is empty, 1 if it is a singleton, and otherwise the second-to-last part of its omega-sequence. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1), and its omicron is 2.

Examples

			The a(1) = 1 through a(8) = 17 partitions:
  (11)  (21)  (22)   (32)    (33)     (43)      (44)
              (31)   (41)    (42)     (52)      (53)
              (211)  (221)   (51)     (61)      (62)
                     (311)   (411)    (322)     (71)
                     (2111)  (2211)   (331)     (332)
                             (3111)   (511)     (422)
                             (21111)  (2221)    (611)
                                      (3211)    (3221)
                                      (4111)    (3311)
                                      (22111)   (4211)
                                      (31111)   (5111)
                                      (211111)  (22211)
                                                (32111)
                                                (41111)
                                                (221111)
                                                (311111)
                                                (2111111)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Switch[#,{},0,{},1,,NestWhile[Sort[Length/@Split[#]]&,#,Length[#]>1&]//First]==2&]],{n,0,30}]

A325410 Smallest k such that the adjusted frequency depth of k! is n > 2.

Original entry on oeis.org

3, 4, 5, 7, 26, 65, 942, 24147
Offset: 3

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

If infinite terms were allowed, we would have a(0) = 1, a(1) = 2, a(2) = infinity. It is possible this sequence is finite, or that there are additional gaps.
The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Examples

			Column n is the sequence of images under A181819 starting with a(n)!:
  6  24  120  5040  403291461126605635584000000
  4  10  20   84    11264760
  3  4   6    12    240
     3   4    6     28
         3    4     6
              3     4
                    3
		

Crossrefs

a(n) is the first position of n in A325272.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    dat=Table[fdadj[n!],{n,1000}];
    Table[Position[dat,k][[1,1]],{k,3,Max@@dat}]

A307734 Smallest k such that the adjusted frequency depth of k! is n, and 0 if there is no such k.

Original entry on oeis.org

1, 2, 0, 3, 4, 5, 7, 26, 65, 942, 24147
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
Conjecture: this sequence has infinitely many nonzero terms.

Examples

			Column n is the sequence of images under A181819 starting with a(n)!:
  -  2  -  6  24  120  5040  403291461126605635584000000
           4  10  20   84    11264760
           3  4   6    12    240
              3   4    6     28
                  3    4     6
                       3     4
                             3
		

Crossrefs

Essentially the same as A325410.
a(n) is zero or the first position of n in A325272.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

A325265 Numbers with sum of omega-sequence > 4.

Original entry on oeis.org

6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their omega-sequences begins:
   6: 2 2 1       46: 2 2 1         80: 5 2 2 1       112: 5 2 2 1
  10: 2 2 1       48: 5 2 2 1       81: 4 1           114: 3 3 1
  12: 3 2 2 1     50: 3 2 2 1       82: 2 2 1         115: 2 2 1
  14: 2 2 1       51: 2 2 1         84: 4 3 2 2 1     116: 3 2 2 1
  15: 2 2 1       52: 3 2 2 1       85: 2 2 1         117: 3 2 2 1
  16: 4 1         54: 4 2 2 1       86: 2 2 1         118: 2 2 1
  18: 3 2 2 1     55: 2 2 1         87: 2 2 1         119: 2 2 1
  20: 3 2 2 1     56: 4 2 2 1       88: 4 2 2 1       120: 5 3 2 2 1
  21: 2 2 1       57: 2 2 1         90: 4 3 2 2 1     122: 2 2 1
  22: 2 2 1       58: 2 2 1         91: 2 2 1         123: 2 2 1
  24: 4 2 2 1     60: 4 3 2 2 1     92: 3 2 2 1       124: 3 2 2 1
  26: 2 2 1       62: 2 2 1         93: 2 2 1         126: 4 3 2 2 1
  28: 3 2 2 1     63: 3 2 2 1       94: 2 2 1         128: 7 1
  30: 3 3 1       64: 6 1           95: 2 2 1         129: 2 2 1
  32: 5 1         65: 2 2 1         96: 6 2 2 1       130: 3 3 1
  33: 2 2 1       66: 3 3 1         98: 3 2 2 1       132: 4 3 2 2 1
  34: 2 2 1       68: 3 2 2 1       99: 3 2 2 1       133: 2 2 1
  35: 2 2 1       69: 2 2 1        100: 4 2 1         134: 2 2 1
  36: 4 2 1       70: 3 3 1        102: 3 3 1         135: 4 2 2 1
  38: 2 2 1       72: 5 2 2 1      104: 4 2 2 1       136: 4 2 2 1
  39: 2 2 1       74: 2 2 1        105: 3 3 1         138: 3 3 1
  40: 4 2 2 1     75: 3 2 2 1      106: 2 2 1         140: 4 3 2 2 1
  42: 3 3 1       76: 3 2 2 1      108: 5 2 2 1       141: 2 2 1
  44: 3 2 2 1     77: 2 2 1        110: 3 3 1         142: 2 2 1
  45: 3 2 2 1     78: 3 3 1        111: 2 2 1         143: 2 2 1
		

Crossrefs

Positions of terms > 4 in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],Total[omseq[#]]>4&]

A325411 Numbers whose omega-sequence has repeated parts.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Apr 24 2019

Keywords

Comments

First differs from A323304 in lacking 216. First differs from A106543 in having 144.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose omega-sequence has repeated parts. The enumeration of these partitions by sum is given by A325285.
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), which has repeated parts, so 180 is in the sequence.

Examples

			The sequence of terms together with their omega-sequences begins:
   6: 2 2 1       51: 2 2 1         86: 2 2 1        119: 2 2 1
  10: 2 2 1       52: 3 2 2 1       87: 2 2 1        120: 5 3 2 2 1
  12: 3 2 2 1     54: 4 2 2 1       88: 4 2 2 1      122: 2 2 1
  14: 2 2 1       55: 2 2 1         90: 4 3 2 2 1    123: 2 2 1
  15: 2 2 1       56: 4 2 2 1       91: 2 2 1        124: 3 2 2 1
  18: 3 2 2 1     57: 2 2 1         92: 3 2 2 1      126: 4 3 2 2 1
  20: 3 2 2 1     58: 2 2 1         93: 2 2 1        129: 2 2 1
  21: 2 2 1       60: 4 3 2 2 1     94: 2 2 1        130: 3 3 1
  22: 2 2 1       62: 2 2 1         95: 2 2 1        132: 4 3 2 2 1
  24: 4 2 2 1     63: 3 2 2 1       96: 6 2 2 1      133: 2 2 1
  26: 2 2 1       65: 2 2 1         98: 3 2 2 1      134: 2 2 1
  28: 3 2 2 1     66: 3 3 1         99: 3 2 2 1      135: 4 2 2 1
  30: 3 3 1       68: 3 2 2 1      102: 3 3 1        136: 4 2 2 1
  33: 2 2 1       69: 2 2 1        104: 4 2 2 1      138: 3 3 1
  34: 2 2 1       70: 3 3 1        105: 3 3 1        140: 4 3 2 2 1
  35: 2 2 1       72: 5 2 2 1      106: 2 2 1        141: 2 2 1
  38: 2 2 1       74: 2 2 1        108: 5 2 2 1      142: 2 2 1
  39: 2 2 1       75: 3 2 2 1      110: 3 3 1        143: 2 2 1
  40: 4 2 2 1     76: 3 2 2 1      111: 2 2 1        144: 6 2 2 1
  42: 3 3 1       77: 2 2 1        112: 5 2 2 1      145: 2 2 1
  44: 3 2 2 1     78: 3 3 1        114: 3 3 1        146: 2 2 1
  45: 3 2 2 1     80: 5 2 2 1      115: 2 2 1        147: 3 2 2 1
  46: 2 2 1       82: 2 2 1        116: 3 2 2 1      148: 3 2 2 1
  48: 5 2 2 1     84: 4 3 2 2 1    117: 3 2 2 1      150: 4 3 2 2 1
  50: 3 2 2 1     85: 2 2 1        118: 2 2 1        152: 4 2 2 1
		

Crossrefs

Positions of nonsquarefree numbers in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],!UnsameQ@@omseq[#]&]
Previous Showing 21-28 of 28 results.