cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A326130 a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), sigma(n)-A005187(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 5, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 1, 4, 4, 1, 2, 1, 1, 2, 3, 4, 4, 1, 1, 2, 2, 1, 4, 5, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 4, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 4, 2, 5, 4, 1, 1, 2, 2, 3, 1, 2, 1, 4, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), A000203(n)-A005187(n)).

A326140 a(n) = gcd(A318878(n), A318879(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 2, 12, 2, 6, 1, 16, 1, 18, 2, 10, 2, 22, 2, 19, 2, 14, 6, 28, 6, 30, 1, 18, 2, 22, 1, 36, 2, 22, 2, 40, 2, 42, 2, 12, 2, 46, 2, 41, 1, 30, 6, 52, 2, 38, 2, 34, 2, 58, 6, 60, 2, 22, 1, 46, 6, 66, 2, 42, 2, 70, 1, 72, 2, 26, 6, 58, 2, 78, 2, 41, 2, 82, 2, 62, 2, 54, 2, 88, 6, 70, 2, 58, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A326140(n) = { my(t=0, u=0); fordiv(n,d, d -= 2*eulerphi(d); if(d<0, t -= d, u += d)); gcd(t,u); };
    
  • PARI
    A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);
    A318879(n) = sumdiv(n,d,d=d-(2*eulerphi(d)); (d>0)*d);
    A326140(n) = gcd(A318878(n), A318879(n));

A325812 Numbers k such that gcd(A034448(k)-k, k-A048146(k)) is equal to abs(k-A048146(k)).

Original entry on oeis.org

1, 6, 12, 28, 56, 60, 108, 120, 132, 168, 264, 280, 312, 408, 420, 440, 456, 496, 528, 540, 552, 696, 700, 728, 744, 756, 760, 888, 984, 992, 1032, 1128, 1140, 1188, 1272, 1404, 1416, 1456, 1464, 1608, 1704, 1710, 1752, 1836, 1896, 1992, 2052, 2136, 2328, 2424, 2472, 2484, 2568, 2616, 2646, 2712, 3048, 3132, 3144, 3288, 3336, 3344
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

Numbers k for which A325813(k) is equal to abs(A325814(k)).
Numbers k such that A325814(k) is not zero (not in A064591) and divides A034460(k).
Conjecture: after the initial one all other terms are even. If this holds then there are no odd perfect numbers.

Crossrefs

Cf. A000396 (a subsequence).

Programs

A326069 a(n) = gcd((sigma(n) - sigma(A032742(n))) - n, n - sigma(A032742(n))), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 4, 12, 2, 3, 1, 16, 1, 18, 2, 1, 2, 22, 4, 19, 2, 14, 4, 28, 6, 30, 1, 3, 2, 1, 1, 36, 2, 1, 2, 40, 2, 42, 4, 3, 2, 46, 4, 41, 1, 3, 2, 52, 2, 1, 8, 1, 2, 58, 12, 60, 2, 1, 1, 1, 6, 66, 2, 3, 2, 70, 1, 72, 2, 2, 4, 1, 2, 78, 2, 41, 2, 82, 4, 1, 2, 3, 4, 88, 6, 7, 4, 1, 2, 5, 4, 96, 1, 3, 1, 100, 6, 102, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326067(n), A326068(n)) = gcd(A326066(n) - n, n - A326065(n)).

A326147 a(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 1, 18, 2, 2, 4, 22, 2, 1, 2, 2, 26, 28, 4, 30, 1, 6, 2, 2, 1, 36, 4, 2, 2, 40, 4, 42, 2, 6, 4, 46, 2, 1, 1, 6, 2, 52, 4, 2, 2, 2, 2, 58, 2, 60, 4, 2, 1, 2, 4, 66, 2, 6, 4, 70, 1, 72, 2, 2, 2, 2, 4, 78, 26, 1, 2, 82, 2, 2, 4, 6, 2, 88, 2, 14, 2, 2, 4, 10, 2, 96, 1, 6, 1, 100, 4, 102, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A020639(n), A000203(n)-A020639(n)-n).
For n > 1, a(n) = gcd(A046666(n), A326146(n)).

A326073 a(n) = gcd(1+n-A020639(n), 1+sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n (and 1 for 1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(1+n-A020639(n), 1+A000203(n)-A020639(n)-n).

A325810 Lexicographically earliest sequence such that a(i) = a(j) => A034460(i) = A034460(j) and A325814(i) = A325814(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 2, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 35, 2, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 45, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A034460(n), A325814(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A033879(i) = A033879(j),
a(i) = a(j) => A325811(i) = A325811(j) => A325813(i) = A325813(i).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A034460(n) = (A034448(n) - n);
    A048146(n) = (sigma(n)-A034448(n));
    A325814(n) = (n-A048146(n));
    v325810 = rgs_transform(vector(up_to,n,[A034460(n), A325814(n)]));
    A325810(n) = v325810[n];

A325811 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) where f(n) = [A034460(n), A325814(n)] for all other numbers, except f(p) = -1 for odd primes.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 5, 6, 3, 7, 3, 8, 9, 2, 3, 10, 3, 11, 12, 13, 3, 14, 15, 16, 17, 18, 3, 19, 3, 2, 20, 21, 22, 23, 3, 24, 25, 26, 3, 27, 3, 28, 29, 30, 3, 31, 32, 33, 34, 35, 3, 36, 37, 38, 39, 40, 3, 41, 3, 42, 25, 2, 43, 44, 3, 45, 46, 47, 3, 48, 3, 49, 50, 51, 52, 53, 3, 54, 32, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 66, 67, 3, 68, 69, 70, 3
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
A325810(i) = A325810(j) => a(i) = a(j) => A325813(i) = A325813(i).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A034460(n) = (A034448(n) - n);
    A048146(n) = (sigma(n)-A034448(n));
    A325814(n) = (n-A048146(n));
    Aux325811(n) = if(isprime(n)&&(n%2),-(n%2),[A034460(n), A325814(n)]);
    v325811 = rgs_transform(vector(up_to,n,Aux325811(n)));
    A325811(n) = v325811[n];
Previous Showing 11-18 of 18 results.