cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A325977 a(n) = (1/2)*(A034460(n) + A325313(n)).

Original entry on oeis.org

0, 1, 1, 0, 1, 6, 1, -2, -2, 8, 1, 4, 1, 10, 9, -6, 1, 3, 1, 4, 11, 14, 1, 0, -9, 16, -11, 4, 1, 42, 1, -14, 15, 20, 13, -5, 1, 22, 17, -4, 1, 54, 1, 4, -3, 26, 1, -8, -20, -2, 21, 4, 1, -6, 17, -8, 23, 32, 1, 36, 1, 34, -7, -30, 19, 78, 1, 4, 27, 74, 1, -21, 1, 40, -11, 4, 19, 90, 1, -20, -38, 44, 1, 44, 23, 46, 33, -16, 1, 36, 21, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Question: Are n = 1, 4, 24, 240, 349440 (A325963) the only positions of zeros in this sequence?

Crossrefs

Programs

Formula

a(n) = (1/2)*(A034460(n) + A325313(n)).
a(n) = A325973(n) - n.
a(n) = A325978(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) - 1)/4 = 0.0921081944... . - Amiram Eldar, Feb 22 2024

A325978 a(n) = (1/2)*(A325314(n) + A325814(n)).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, -1, 3, 10, 11, 0, 13, 14, 15, -5, 17, 0, 19, 2, 21, 22, 23, -12, 10, 26, 3, 4, 29, 30, 31, -13, 33, 34, 35, -24, 37, 38, 39, -14, 41, 42, 43, 8, 9, 46, 47, -36, 21, 5, 51, 10, 53, -18, 55, -16, 57, 58, 59, -12, 61, 62, 15, -29, 65, 66, 67, 14, 69, 70, 71, -72, 73, 74, 15, 16, 77, 78, 79, -46, 3, 82, 83, -12, 85
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Question: Are a(12) = 0 and a(18) = 0 the only zeros in this sequence?

Crossrefs

Programs

Formula

a(n) = (1/2)*(A325314(n) + A325814(n)).
a(n) = n - A325974(n).
a(n) = A033879(n) + A325977(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/4 - zeta(2)*(1/2 - 1/(4*zeta(3))) = 0.2696411609... . - Amiram Eldar, Feb 22 2024

A325974 Arithmetic mean of {sum of non-unitary divisors} and {sum of nonsquarefree divisors}: a(n) = (1/2)*(A048146(n) + A162296(n)).

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 9, 6, 0, 0, 12, 0, 0, 0, 21, 0, 18, 0, 18, 0, 0, 0, 36, 15, 0, 24, 24, 0, 0, 0, 45, 0, 0, 0, 60, 0, 0, 0, 54, 0, 0, 0, 36, 36, 0, 0, 84, 28, 45, 0, 42, 0, 72, 0, 72, 0, 0, 0, 72, 0, 0, 48, 93, 0, 0, 0, 54, 0, 0, 0, 144, 0, 0, 60, 60, 0, 0, 0, 126, 78, 0, 0, 96, 0, 0, 0, 108, 0, 108, 0, 72, 0, 0, 0, 180, 0, 84, 72
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, non-unitary divisors are 2, 3, 6, 12 and 18 so A048146(36) = 2+3+6+12+18 = 41, while the nonsquarefree divisors are 4, 9, 12, 18 and 36, so A162296(36) = 4+9+12+18+36 = 79, thus a(36) = (41+79)/2 = 60.
		

Crossrefs

Programs

Formula

a(n) = (1/2)*(A048146(n) + A162296(n)).
a(n) = A000203(n) - A325973(n).
a(n) = n - A325978(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)*(1/2 - 1/(4*zeta(3))) - 1/4 = 0.2303588390... . - Amiram Eldar, Feb 22 2024

A326130 a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), sigma(n)-A005187(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 5, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 1, 4, 4, 1, 2, 1, 1, 2, 3, 4, 4, 1, 1, 2, 2, 1, 4, 5, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 4, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 4, 2, 5, 4, 1, 1, 2, 2, 3, 1, 2, 1, 4, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000120(n), A294898(n)) = gcd(A000120(n), A000203(n)-A005187(n)).

A326140 a(n) = gcd(A318878(n), A318879(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 2, 12, 2, 6, 1, 16, 1, 18, 2, 10, 2, 22, 2, 19, 2, 14, 6, 28, 6, 30, 1, 18, 2, 22, 1, 36, 2, 22, 2, 40, 2, 42, 2, 12, 2, 46, 2, 41, 1, 30, 6, 52, 2, 38, 2, 34, 2, 58, 6, 60, 2, 22, 1, 46, 6, 66, 2, 42, 2, 70, 1, 72, 2, 26, 6, 58, 2, 78, 2, 41, 2, 82, 2, 62, 2, 54, 2, 88, 6, 70, 2, 58, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A326140(n) = { my(t=0, u=0); fordiv(n,d, d -= 2*eulerphi(d); if(d<0, t -= d, u += d)); gcd(t,u); };
    
  • PARI
    A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);
    A318879(n) = sumdiv(n,d,d=d-(2*eulerphi(d)); (d>0)*d);
    A326140(n) = gcd(A318878(n), A318879(n));

A325979 Odd numbers k for which gcd(A325977(k), A325978(k)) is equal to abs(A325978(k)).

Original entry on oeis.org

1, 3465, 72981, 78651, 80937, 152703, 199341, 201771, 241605, 253287, 492507, 631881, 880821, 933147, 985473, 1063755, 1209285, 1244133, 1292445, 1313235, 1327095, 1347885, 1360881, 1451835, 1521135, 1597365, 1620375, 1814373, 2015475, 2664585, 6058233, 6676371, 8186751, 11119761, 17496243, 18379935, 28695627
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Provided that A325977(k) and A325978(k) are never zero for the same k, these are odd numbers k such that A325978(k) is not zero and divides A325977(k).
Of the first 281 terms, only a(5) = 80937, a(51) = 86086881, a(175) = 43024468437, and a(262) = 564858541521 are in A228058. - Updated Jul 20 2025

Crossrefs

Programs

A326069 a(n) = gcd((sigma(n) - sigma(A032742(n))) - n, n - sigma(A032742(n))), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 4, 12, 2, 3, 1, 16, 1, 18, 2, 1, 2, 22, 4, 19, 2, 14, 4, 28, 6, 30, 1, 3, 2, 1, 1, 36, 2, 1, 2, 40, 2, 42, 4, 3, 2, 46, 4, 41, 1, 3, 2, 52, 2, 1, 8, 1, 2, 58, 12, 60, 2, 1, 1, 1, 6, 66, 2, 3, 2, 70, 1, 72, 2, 2, 4, 1, 2, 78, 2, 41, 2, 82, 4, 1, 2, 3, 4, 88, 6, 7, 4, 1, 2, 5, 4, 96, 1, 3, 1, 100, 6, 102, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326067(n), A326068(n)) = gcd(A326066(n) - n, n - A326065(n)).

A326071 Numbers k such that A325977(k) has a different sign as A325978(k).

Original entry on oeis.org

1, 4, 9, 12, 18, 24, 25, 27, 45, 49, 50, 60, 63, 75, 81, 84, 90, 98, 99, 117, 120, 121, 125, 126, 132, 140, 147, 150, 153, 156, 168, 169, 171, 175, 180, 198, 204, 207, 228, 234, 240, 242, 243, 245, 261, 264, 270, 275, 276, 279, 280, 289, 294, 297, 306, 312, 325, 333, 338, 342, 343, 348, 350, 351, 361, 363, 369, 372
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2019

Keywords

Comments

See comments in A326070.

Crossrefs

Cf. A326070 (complement), A326072 (characteristic function).

Programs

A326147 a(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 1, 18, 2, 2, 4, 22, 2, 1, 2, 2, 26, 28, 4, 30, 1, 6, 2, 2, 1, 36, 4, 2, 2, 40, 4, 42, 2, 6, 4, 46, 2, 1, 1, 6, 2, 52, 4, 2, 2, 2, 2, 58, 2, 60, 4, 2, 1, 2, 4, 66, 2, 6, 4, 70, 1, 72, 2, 2, 2, 2, 4, 78, 26, 1, 2, 82, 2, 2, 4, 6, 2, 88, 2, 14, 2, 2, 4, 10, 2, 96, 1, 6, 1, 100, 4, 102, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A020639(n), A000203(n)-A020639(n)-n).
For n > 1, a(n) = gcd(A046666(n), A326146(n)).

A326070 Numbers k such that A325977(k) has the same sign as A325978(k).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 100
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2019

Keywords

Comments

Here A325977(k) = A325973(k) - k and A325978(k) = k - A325974(k), where A325973(k) is the average of {sum of unitary divisors} and {sum of squarefree divisors} = (1/2) * (A034448(k) + A048250(k)) while A325974(k) is the average of {sum of non-unitary divisors} and {sum of nonsquarefree divisors} = (1/2)*(A048146(k) + A162296(k)). Only if signs of A325977(k) and A325978(k) are equal can their difference A325978(k) - A325977(k) = (k - A325974(k)) - (A325973(k) - k) = 2k - (A325973(k) + A325974(k)) = 2k - A000203(k) = A033879(k) be zero, which happens when k is a perfect number (in A000396).

Crossrefs

Cf. A326071 (complement), A326072, A000396 (a subsequence).

Programs

Previous Showing 11-20 of 22 results. Next