cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A326140 a(n) = gcd(A318878(n), A318879(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 2, 12, 2, 6, 1, 16, 1, 18, 2, 10, 2, 22, 2, 19, 2, 14, 6, 28, 6, 30, 1, 18, 2, 22, 1, 36, 2, 22, 2, 40, 2, 42, 2, 12, 2, 46, 2, 41, 1, 30, 6, 52, 2, 38, 2, 34, 2, 58, 6, 60, 2, 22, 1, 46, 6, 66, 2, 42, 2, 70, 1, 72, 2, 26, 6, 58, 2, 78, 2, 41, 2, 82, 2, 62, 2, 54, 2, 88, 6, 70, 2, 58, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A326140(n) = { my(t=0, u=0); fordiv(n,d, d -= 2*eulerphi(d); if(d<0, t -= d, u += d)); gcd(t,u); };
    
  • PARI
    A318878(n) = sumdiv(n,d,d=(2*eulerphi(d))-d; (d>0)*d);
    A318879(n) = sumdiv(n,d,d=d-(2*eulerphi(d)); (d>0)*d);
    A326140(n) = gcd(A318878(n), A318879(n));

A326049 a(n) = n - A050449(n), where A050449 is the sum of divisors of the form 4k+1.

Original entry on oeis.org

0, 1, 2, 3, -1, 5, 6, 7, -1, 4, 10, 11, -1, 13, 9, 15, -1, 8, 18, 14, -1, 21, 22, 23, -6, 12, 17, 27, -1, 24, 30, 31, -1, 16, 29, 26, -1, 37, 25, 34, -1, 20, 42, 43, -15, 45, 46, 47, -1, 19, 33, 38, -1, 44, 49, 55, -1, 28, 58, 54, -1, 61, 32, 63, -19, 32, 66, 50, -1, 64, 70, 62, -1, 36, 44, 75, -1, 64, 78, 74, -10, 40
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A050449(n).
a(n) = A326050(n) + A033879(n).

A326050 a(n) = A082052(n) - n, where A082052 is the sum of divisors of n that are not of the form 4k+1.

Original entry on oeis.org

-1, 0, 0, 2, -5, 5, 0, 6, -6, 2, 0, 15, -13, 9, 3, 14, -17, 11, 0, 16, -11, 13, 0, 35, -25, 2, 3, 27, -29, 36, 0, 30, -19, 2, 7, 45, -37, 21, 3, 44, -41, 32, 0, 39, -27, 25, 0, 75, -42, 12, 3, 32, -53, 56, 11, 63, -35, 2, 0, 102, -61, 33, 10, 62, -65, 44, 0, 40, -43, 68, 0, 113, -73, 2, 18, 63, -59, 76, 0, 100, -51, 2, 0, 118, -85, 45, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[n],Mod[#-1,4]!=0&]]-n,{n,90}] (* Harvey P. Dale, Jul 12 2024 *)
  • PARI
    A082052(n) = sumdiv(n, d, if(1!=(d%4), d));
    A326050(n) = (A082052(n)-n);

Formula

a(n) = A082052(n) - n.
a(n) = A326049(n) - A033879(n).

A326069 a(n) = gcd((sigma(n) - sigma(A032742(n))) - n, n - sigma(A032742(n))), where A032742 gives the largest proper divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 5, 2, 10, 4, 12, 2, 3, 1, 16, 1, 18, 2, 1, 2, 22, 4, 19, 2, 14, 4, 28, 6, 30, 1, 3, 2, 1, 1, 36, 2, 1, 2, 40, 2, 42, 4, 3, 2, 46, 4, 41, 1, 3, 2, 52, 2, 1, 8, 1, 2, 58, 12, 60, 2, 1, 1, 1, 6, 66, 2, 3, 2, 70, 1, 72, 2, 2, 4, 1, 2, 78, 2, 41, 2, 82, 4, 1, 2, 3, 4, 88, 6, 7, 4, 1, 2, 5, 4, 96, 1, 3, 1, 100, 6, 102, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A326067(n), A326068(n)) = gcd(A326066(n) - n, n - A326065(n)).

A326147 a(n) = gcd(n-A020639(n), sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 6, 1, 1, 2, 10, 2, 12, 4, 6, 1, 16, 1, 18, 2, 2, 4, 22, 2, 1, 2, 2, 26, 28, 4, 30, 1, 6, 2, 2, 1, 36, 4, 2, 2, 40, 4, 42, 2, 6, 4, 46, 2, 1, 1, 6, 2, 52, 4, 2, 2, 2, 2, 58, 2, 60, 4, 2, 1, 2, 4, 66, 2, 6, 4, 70, 1, 72, 2, 2, 2, 2, 4, 78, 26, 1, 2, 82, 2, 2, 4, 6, 2, 88, 2, 14, 2, 2, 4, 10, 2, 96, 1, 6, 1, 100, 4, 102, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A020639(n), A000203(n)-A020639(n)-n).
For n > 1, a(n) = gcd(A046666(n), A326146(n)).

A326073 a(n) = gcd(1+n-A020639(n), 1+sigma(n)-A020639(n)-n), where A020639 gives the smallest prime factor of n (and 1 for 1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 7, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(1+n-A020639(n), 1+A000203(n)-A020639(n)-n).
Previous Showing 11-16 of 16 results.