cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A326360 Number of maximal antichains of nonempty, non-singleton subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 2, 13, 279, 29820, 123590767
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(1) = 1 through a(4) = 13 maximal antichains:
  {}  {12}  {123}         {1234}
            {12}{13}{23}  {12}{134}{234}
                          {13}{124}{234}
                          {14}{123}{234}
                          {23}{124}{134}
                          {24}{123}{134}
                          {34}{123}{124}
                          {12}{13}{14}{234}
                          {12}{23}{24}{134}
                          {13}{23}{34}{124}
                          {14}{24}{34}{123}
                          {123}{124}{134}{234}
                          {12}{13}{14}{23}{24}{34}
		

Crossrefs

Antichains of nonempty, non-singleton sets are A307249.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],SubsetQ]]],{n,0,4}]
  • Python
    # see Ignatov links
    # Dmitry I. Ignatov, Oct 14 2021

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A326359(k) for n >= 2. - Andrew Howroyd, Nov 19 2021

Extensions

a(6) from Andrew Howroyd, Aug 14 2019
a(7) from Dmitry I. Ignatov, Oct 14 2021

A343660 Number of maximal pairwise coprime sets of at least two divisors > 1 of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 4, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 8, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 6, 0, 1, 2, 2, 1, 4, 0, 4, 0, 1, 0, 8, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Examples

			The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
  {2,3}  {2,3}  {2,3}  {5,6}    {2,3}  {5,6}    {2,3}  {2,3}
         {3,4}  {3,4}  {2,15}   {2,9}  {2,15}   {2,9}  {3,4}
                {3,8}  {3,10}   {3,4}  {3,10}   {3,4}  {3,8}
                       {2,3,5}  {4,9}  {3,20}   {3,8}  {3,16}
                                       {4,15}   {4,9}  {3,32}
                                       {5,12}   {8,9}
                                       {2,3,5}
                                       {3,4,5}
		

Crossrefs

The case of pairs is A089233.
The case with 1's is A343652.
The case with singletons is (also) A343652.
The non-maximal version is A343653.
The non-maximal version with 1's is A343655.
The version for subsets of {2..n} is A343659 (for n > 2).
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A066620 counts pairwise coprime 3-sets of divisors.
A100565 counts pairwise coprime unordered triples of divisors.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
    Table[Length[fasmax[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]]],{n,100}]

Formula

a(n) = A343652(n) - A005361(n).

A348260 Number of inequivalent maximal antichains of the Boolean lattice on a set of n elements.

Original entry on oeis.org

1, 2, 3, 5, 10, 30, 233, 35925
Offset: 0

Views

Author

Dmitry I. Ignatov, Oct 13 2021

Keywords

Comments

a(n) is the number of orbits for the corresponding families of maximal antichains (see also A326358) of the powerset of {1,2,...,n} under the action of the symmetry group S_n.

Examples

			The a(0)=1 maximal antichains is {}.
The a(1)=2 maximal antichains are {}, {1}.
The a(2)=3 maximal antichains {}, {1}{2}, {12}.
Representatives of the a(3)=5 maximal antichains are: {}, {1}{2}{3}, {12}{3}, {12}{13}{23}, {123}.
Representatives of the a(4)=10 maximal antichains are:
   {},                       {1}{2}{3}{4},
   {12}{3}{4},               {12}{13}{23}{4},
   {123}{4},                 {12}{13}{24}{14}{24}{34},
   {123}{14}{24}{34},        {123}{124}{34},
   {123}{124}{134}{234},     {1234}.
		

Crossrefs

Cf. A003182 (not necessarily maximal), A326358 (labeled case).
Previous Showing 11-13 of 13 results.