A309314
BII-numbers of hyperforests.
Original entry on oeis.org
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 292, 304, 320, 512, 513, 516, 520, 521, 524, 528, 532
Offset: 1
The sequence of all hyperforests together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
64: {{1,2,3}}
128: {{4}}
129: {{1},{4}}
130: {{2},{4}}
131: {{1},{2},{4}}
132: {{1,2},{4}}
136: {{3},{4}}
137: {{1},{3},{4}}
Cf.
A000120,
A030019,
A035053,
A048143,
A048793,
A052888,
A070939,
A134954,
A275307,
A326031,
A326702,
A326753.
A326788
BII-numbers of simple labeled graphs.
Original entry on oeis.org
0, 4, 16, 20, 32, 36, 48, 52, 256, 260, 272, 276, 288, 292, 304, 308, 512, 516, 528, 532, 544, 548, 560, 564, 768, 772, 784, 788, 800, 804, 816, 820, 2048, 2052, 2064, 2068, 2080, 2084, 2096, 2100, 2304, 2308, 2320, 2324, 2336, 2340, 2352, 2356, 2560, 2564
Offset: 1
The sequence of all simple labeled graphs together with their BII-numbers begins:
0: {}
4: {{1,2}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
288: {{2,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
308: {{1,2},{1,3},{2,3},{1,4}}
512: {{2,4}}
516: {{1,2},{2,4}}
528: {{1,3},{2,4}}
532: {{1,2},{1,3},{2,4}}
Cf.
A000120,
A006125,
A006129,
A018900,
A048793,
A062880,
A070939,
A309356 (same for MM-numbers),
A322551,
A326031,
A326702.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,100],SameQ[2,##]&@@Length/@bpe/@bpe[#]&]
A367909
Numbers n such that there is more than one way to choose a different binary index of each binary index of n.
Original entry on oeis.org
4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
Offset: 1
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence.
The terms together with the corresponding set-systems begin:
4: {{1,2}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
72: {{3},{1,2,3}}
These set-systems are counted by
A367772.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions per axiom, complement
A368097.
BII-numbers:
A309314 (hyperforests),
A326701 (set partitions),
A326703 (chains),
A326704 (antichains),
A326749 (connected),
A326750 (clutters),
A326751 (blobs),
A326752 (hypertrees),
A326754 (covers),
A326783 (uniform),
A326784 (regular),
A326788 (simple),
A330217 (achiral).
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]
A329661
BII-number of the set-system whose MM-number is A329629(n).
Original entry on oeis.org
0, 1, 2, 8, 4, 3, 128, 16, 32768, 9, 5, 2147483648, 256, 32, 129, 10, 9223372036854775808, 6, 170141183460469231731687303715884105728, 512, 65536, 57896044618658097711785492504343953926634992332820282019728792003956564819968, 130, 17, 32769, 4294967296
Offset: 1
The sequence of all set-systems together with their MM-numbers and BII-numbers begins:
{}: 1 ~ 0
{{1}}: 3 ~ 1
{{2}}: 5 ~ 2
{{3}}: 11 ~ 8
{{1,2}}: 13 ~ 4
{{1},{2}}: 15 ~ 3
{{4}}: 17 ~ 128
{{1,3}}: 29 ~ 16
{{5}}: 31 ~ 32768
{{1},{3}}: 33 ~ 9
{{1},{1,2}}: 39 ~ 5
{{6}}: 41 ~ 2147483648
{{1,4}}: 43 ~ 256
{{2,3}}: 47 ~ 32
{{1},{4}}: 51 ~ 129
{{2},{3}}: 55 ~ 10
{{7}}: 59 ~ 9223372036854775808
{{2},{1,2}}: 65 ~ 6
{{8}}: 67 ~ 170141183460469231731687303715884105728
{{2,4}}: 73 ~ 512
MM-numbers of set-systems are
A329629.
-
fbi[q_]:=If[q=={},0,Total[2^q]/2];
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
das=Select[Range[100],OddQ[#]&&SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&];
Table[fbi[fbi/@primeMS/@primeMS[n]],{n,das}]
Comments