A048672
Binary encoding of squarefree numbers (A005117): A048640(n)/2.
Original entry on oeis.org
0, 1, 2, 4, 3, 8, 5, 16, 32, 9, 6, 64, 128, 10, 17, 256, 33, 512, 7, 1024, 18, 65, 12, 2048, 129, 34, 4096, 11, 8192, 257, 16384, 66, 32768, 20, 130, 513, 65536, 131072, 1025, 36, 19, 262144, 258, 13, 524288, 1048576, 2049, 24, 35, 2097152, 4097, 4194304, 68
Offset: 1
From _Gus Wiseman_, Nov 30 2019: (Start)
The sequence of squarefree numbers together with their prime indices (A329631) and the number a(n) with those binary indices begins:
1 -> {} -> 0
2 -> {1} -> 1
3 -> {2} -> 2
5 -> {3} -> 4
6 -> {1,2} -> 3
7 -> {4} -> 8
10 -> {1,3} -> 5
11 -> {5} -> 16
13 -> {6} -> 32
14 -> {1,4} -> 9
15 -> {2,3} -> 6
17 -> {7} -> 64
19 -> {8} -> 128
21 -> {2,4} -> 10
22 -> {1,5} -> 17
23 -> {9} -> 256
26 -> {1,6} -> 33
29 -> {10} -> 512
30 -> {1,2,3} -> 7
(End)
A similar encoding of set-systems is
A329661.
-
encode_sqrfrees := proc(upto_n) local b,i; b := [ ]; for i from 1 to upto_n do if(0 <> mobius(i)) then b := [ op(b), bef(i) ]; fi; od: RETURN(b); end; # see A048623 for bef
-
Join[{0}, Total[2^(PrimePi[FactorInteger[#][[All, 1]]] - 1)]& /@ Select[ Range[2, 100], SquareFreeQ]] (* Jean-François Alcover, Mar 15 2016 *)
-
lista(nn) = {for (n=1, nn, if (issquarefree(n), if (n==1, x = 0, f = factor(n); x = sum(k=1, #f~, 2^(primepi(f[k, 1])-1))); print1(x, ", "); ); ); } \\ Michel Marcus, Oct 02 2015
-
from math import isqrt
from sympy import mobius, primepi, primefactors
def A048672(n):
if n == 1: return 0
def f(x): return int(n-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return sum(1<Chai Wah Wu, Feb 22 2025
A329560
BII-numbers of antichains of sets with empty intersection.
Original entry on oeis.org
0, 3, 9, 10, 11, 12, 18, 33, 52, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 258, 264, 266, 268, 274, 288, 292, 304, 308, 513, 520, 521, 524, 528, 532, 545, 560, 564, 772, 776, 780, 784, 788, 800, 804, 816, 820, 832
Offset: 1
The sequence of terms together with their binary expansions and corresponding set-systems begins:
0: 0 ~ {}
3: 11 ~ {{1},{2}}
9: 1001 ~ {{1},{3}}
10: 1010 ~ {{2},{3}}
11: 1011 ~ {{1},{2},{3}}
12: 1100 ~ {{1,2},{3}}
18: 10010 ~ {{2},{1,3}}
33: 100001 ~ {{1},{2,3}}
52: 110100 ~ {{1,2},{1,3},{2,3}}
129: 10000001 ~ {{1},{4}}
130: 10000010 ~ {{2},{4}}
131: 10000011 ~ {{1},{2},{4}}
132: 10000100 ~ {{1,2},{4}}
136: 10001000 ~ {{3},{4}}
137: 10001001 ~ {{1},{3},{4}}
138: 10001010 ~ {{2},{3},{4}}
139: 10001011 ~ {{2},{3},{4}}
140: 10001100 ~ {{1,2},{3},{4}}
144: 10010000 ~ {{1,3},{4}}
146: 10010010 ~ {{2},{1,3},{4}}
148: 10010100 ~ {{1,2},{1,3},{4}}
BII-numbers of intersecting set-systems with empty intersecting are
A326912.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],#==0||Intersection@@bpe/@bpe[#]=={}&&stableQ[bpe/@bpe[#],SubsetQ]&]
A330296
BII-numbers of set partitions with at least two blocks.
Original entry on oeis.org
3, 9, 10, 11, 12, 18, 33, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 258, 264, 266, 288, 513, 520, 521, 528, 1032, 2049, 2050, 2051, 2052, 4098, 8193, 32769, 32770, 32771, 32772, 32776, 32777, 32778, 32779, 32780, 32784, 32786, 32800
Offset: 1
The sequence of all set partitions with at least two parts together with their BII-numbers begins:
3: {1}{2} 140: {3}{4}{12} 2049: {1}{34}
9: {1}{3} 144: {4}{13} 2050: {2}{34}
10: {2}{3} 146: {2}{4}{13} 2051: {1}{2}{34}
11: {1}{2}{3} 160: {4}{23} 2052: {12}{34}
12: {3}{12} 161: {1}{4}{23} 4098: {2}{134}
18: {2}{13} 192: {4}{123} 8193: {1}{234}
33: {1}{23} 258: {2}{14} 32769: {1}{5}
129: {1}{4} 264: {3}{14} 32770: {2}{5}
130: {2}{4} 266: {2}{3}{14} 32771: {1}{2}{5}
131: {1}{2}{4} 288: {14}{23} 32772: {5}{12}
132: {4}{12} 513: {1}{24} 32776: {3}{5}
136: {3}{4} 520: {3}{24} 32777: {1}{3}{5}
137: {1}{3}{4} 521: {1}{3}{24} 32778: {2}{3}{5}
138: {2}{3}{4} 528: {13}{24} 32779: {1}{2}{3}{5}
139: {1}{2}{3}{4} 1032: {3}{124} 32780: {3}{5}{12}
BII-numbers of set partitions are
A326701.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[1000],Length[bpe[#]]>=2&&Length[Join@@bpe/@bpe[#]]==Length[Union@@bpe/@bpe[#]]&]
Showing 1-3 of 3 results.
Comments