A326942
Number of unlabeled T_0 sets of subsets of {1..n} that cover all n vertices.
Original entry on oeis.org
2, 2, 6, 58, 3770
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 6 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A319637.
The non-covering version is
A326949 (partial sums).
Cf.
A000371,
A003180,
A055621,
A059201,
A316978,
A319559,
A319564,
A326907,
A326941,
A326943,
A326946.
A326967
Number of sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.
Original entry on oeis.org
2, 4, 10, 92, 38362, 4020654364, 18438434849260080818, 340282363593610212050791236025945013956, 115792089237316195072053288318104625957065868613454666314675263144628100544274
Offset: 0
The a(0) = 2 through a(2) = 10 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{},{1}}
{{},{2}}
{{1},{2}}
{{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A326965.
Sets of subsets whose dual is a weak antichain are
A326969.
-
tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
Table[Length[Select[Subsets[Subsets[Range[n]]],tmQ[#]&]],{n,0,3}]
A326948
Number of connected T_0 set-systems on n vertices.
Original entry on oeis.org
1, 1, 3, 86, 31302, 2146841520, 9223371978880250448, 170141183460469231408869283342774399392, 57896044618658097711785492504343953919148780260559635830120038252613826101856
Offset: 0
The a(3) = 86 set-systems:
{12}{13} {1}{2}{13}{123} {1}{2}{3}{13}{23}
{12}{23} {1}{2}{23}{123} {1}{2}{3}{13}{123}
{13}{23} {1}{3}{12}{13} {1}{2}{3}{23}{123}
{1}{2}{123} {1}{3}{12}{23} {1}{2}{12}{13}{23}
{1}{3}{123} {1}{3}{12}{123} {1}{2}{12}{13}{123}
{1}{12}{13} {1}{3}{13}{23} {1}{2}{12}{23}{123}
{1}{12}{23} {1}{3}{13}{123} {1}{2}{13}{23}{123}
{1}{12}{123} {1}{3}{23}{123} {1}{3}{12}{13}{23}
{1}{13}{23} {1}{12}{13}{23} {1}{3}{12}{13}{123}
{1}{13}{123} {1}{12}{13}{123} {1}{3}{12}{23}{123}
{2}{3}{123} {1}{12}{23}{123} {1}{3}{13}{23}{123}
{2}{12}{13} {1}{13}{23}{123} {1}{12}{13}{23}{123}
{2}{12}{23} {2}{3}{12}{13} {2}{3}{12}{13}{23}
{2}{12}{123} {2}{3}{12}{23} {2}{3}{12}{13}{123}
{2}{13}{23} {2}{3}{12}{123} {2}{3}{12}{23}{123}
{2}{23}{123} {2}{3}{13}{23} {2}{3}{13}{23}{123}
{3}{12}{13} {2}{3}{13}{123} {2}{12}{13}{23}{123}
{3}{12}{23} {2}{3}{23}{123} {3}{12}{13}{23}{123}
{3}{13}{23} {2}{12}{13}{23} {1}{2}{3}{12}{13}{23}
{3}{13}{123} {2}{12}{13}{123} {1}{2}{3}{12}{13}{123}
{3}{23}{123} {2}{12}{23}{123} {1}{2}{3}{12}{23}{123}
{12}{13}{23} {2}{13}{23}{123} {1}{2}{3}{13}{23}{123}
{12}{13}{123} {3}{12}{13}{23} {1}{2}{12}{13}{23}{123}
{12}{23}{123} {3}{12}{13}{123} {1}{3}{12}{13}{23}{123}
{13}{23}{123} {3}{12}{23}{123} {2}{3}{12}{13}{23}{123}
{1}{2}{3}{123} {3}{13}{23}{123} {1}{2}{3}{12}{13}{23}{123}
{1}{2}{12}{13} {12}{13}{23}{123}
{1}{2}{12}{23} {1}{2}{3}{12}{13}
{1}{2}{12}{123} {1}{2}{3}{12}{23}
{1}{2}{13}{23} {1}{2}{3}{12}{123}
The same with covering instead of connected is
A059201, with unlabeled version
A319637.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&UnsameQ@@dual[#]&]],{n,0,3}]
A327016
BII-numbers of finite T_0 topologies without their empty set.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 8, 17, 24, 25, 34, 40, 42, 69, 70, 71, 81, 85, 87, 88, 89, 93, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 257, 384, 385, 514, 640, 642, 1029, 1030, 1031, 1281, 1285, 1287, 1408, 1409, 1413, 1538, 1542, 1543, 1664, 1666, 1670, 1920
Offset: 1
The sequence of all finite T_0 topologies without their empty set together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
85: {{1},{1,2},{1,3},{1,2,3}}
87: {{1},{2},{1,2},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
BII-numbers of topologies without their empty set are
A326876.
BII-numbers of T_0 set-systems are
A326947.
Cf.
A001930,
A048793,
A306445,
A316978,
A319564,
A326031,
A326872,
A326875,
A326939,
A326941,
A326959.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,1000],UnsameQ@@dual[bpe/@bpe[#]]&&SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
Comments