cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A099593 Sum of the number of e-divisors of all numbers from 2 up to n.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 18, 21, 22, 24, 25, 27, 28, 29, 30, 32, 34, 35, 37, 39, 40, 41, 42, 44, 45, 46, 47, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 64, 65, 68, 70, 72, 73, 75, 76, 78, 79, 81, 82, 83, 84, 86, 87, 88, 90, 94, 95, 96, 97, 99, 100, 101
Offset: 1

Views

Author

Ralf Stephan, Oct 26 2004

Keywords

Crossrefs

Equals - 1 + partial sums of A049419. Cf. A145353, A327837.

Programs

  • Mathematica
    f[p_, e_]  := DivisorSigma[0, e]; ediv[n_] := Times @@ (f @@@ FactorInteger[n]);
    Accumulate[Array[ediv, 100]] - 1 (* Amiram Eldar, Jun 23 2019 *)

Formula

a(n) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023

A361063 Multiplicative with a(p^e) = sigma_2(e), where sigma_2 = A001157.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 10, 5, 1, 1, 5, 1, 1, 1, 21, 1, 5, 1, 5, 1, 1, 1, 10, 5, 1, 10, 5, 1, 1, 1, 26, 1, 1, 1, 25, 1, 1, 1, 10, 1, 1, 1, 5, 5, 1, 1, 21, 5, 5, 1, 5, 1, 10, 1, 10, 1, 1, 1, 5, 1, 1, 5, 50, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 5, 5, 1, 1, 1, 21, 21, 1, 1, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[2, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> sigma(x, 2), factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import factorint, divisor_sigma
    def A361063(n): return prod(divisor_sigma(e,2) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
    

Formula

Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_2(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_2(e) - sigma_2(e-1)) / p^e) = 11.343154585178523783556367128387762286267199879648613456124659589127638983...

A361064 Multiplicative with a(p^e) = sigma_3(e), where sigma_3 = A001158.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 28, 9, 1, 1, 9, 1, 1, 1, 73, 1, 9, 1, 9, 1, 1, 1, 28, 9, 1, 28, 9, 1, 1, 1, 126, 1, 1, 1, 81, 1, 1, 1, 28, 1, 1, 1, 9, 9, 1, 1, 73, 9, 9, 1, 9, 1, 28, 1, 28, 1, 1, 1, 9, 1, 1, 9, 252, 1, 1, 1, 9, 1, 1, 1, 252, 1, 1, 9, 9, 1, 1, 1, 73, 73, 1, 1, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[3, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> sigma(x, 3), factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import factorint, divisor_sigma
    def A361064(n): return prod(divisor_sigma(e,3) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
    

Formula

Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_3(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_3(e) - sigma_3(e-1)) / p^e) = 136.775196585091127831467103699999450735835551529525277016916082455332230986...

A368541 The number of exponential divisors of the nonsquarefree numbers.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

The terms of A049419 that are larger than 1, since A049419(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 1 &]
  • PARI
    lista(kmax) = {my(p, f); for(k = 1, kmax, f = factor(k); p = prod(i=1, #f~, numdiv(f[i, 2])); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A049419(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (A327837 - A059956)/A229099 = 2.53623753427906735929... .

A379714 Partial alternating sums of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 0, 1, -1, 0, -1, 0, -2, 0, -1, 0, -2, -1, -2, -1, -4, -3, -5, -4, -6, -5, -6, -5, -7, -5, -6, -4, -6, -5, -6, -5, -7, -6, -7, -6, -10, -9, -10, -9, -11, -10, -11, -10, -12, -10, -11, -10, -13, -11, -13, -12, -14, -13, -15, -14, -16, -15, -16, -15, -17, -16
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_]  := DivisorSigma[0, e]; ediv[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Table[(-1)^(n+1)*ediv[n], {n, 1, 100}]]
  • PARI
    ediv(n) = vecprod(apply(numdiv, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) * ediv(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A049419(k).
Limit_{n->oo} a(n)/n = A327837 * (2/(A065442 + 1) - 1) = -0.37293122584744001729... .
Previous Showing 11-15 of 15 results.