A328221
Number of integer partitions of n with at least one pair of consecutive divisible parts.
Original entry on oeis.org
0, 0, 1, 2, 4, 5, 10, 12, 20, 26, 38, 51, 73, 92, 126, 166, 219, 283, 369, 470, 604, 763, 968, 1217, 1534, 1907, 2376, 2944, 3640, 4476, 5501, 6723, 8212, 9986, 12130, 14682, 17748, 21376, 25717, 30847, 36959, 44152, 52688, 62714, 74557, 88440, 104775, 123878
Offset: 0
The a(2) = 1 through a(8) = 20 partitions:
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (322) (62)
(211) (311) (51) (331) (71)
(1111) (2111) (222) (421) (332)
(11111) (321) (511) (422)
(411) (2221) (431)
(2211) (3211) (521)
(3111) (4111) (611)
(21111) (22111) (2222)
(111111) (31111) (3221)
(211111) (3311)
(1111111) (4211)
(5111)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
The complement is counted by
A328171.
Partitions whose consecutive parts are relatively prime are
A328172.
Partitions with no pair of consecutive parts relatively prime are
A328187.
Numbers without consecutive divisible proper divisors are
A328028.
-
Table[Length[Select[IntegerPartitions[n],MatchQ[#,{_,x_,y_,_}/;Divisible[x,y]]&]],{n,0,30}]
A328602
Number of necklace compositions of n where no pair of circularly adjacent parts is relatively prime.
Original entry on oeis.org
0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 16, 1, 20, 9, 35, 2, 69, 3, 111, 24, 190, 13, 384, 31, 646, 102, 1212, 113, 2348, 227, 4254, 613, 7993, 976, 15459, 1915, 28825, 4357, 54988, 7868, 105826, 15760, 201115, 33376, 385590, 63974, 744446, 128224, 1428047, 262914, 2754037
Offset: 1
The a(2) = 1 through a(10) = 8 necklace compositions:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(2,2) (2,4) (2,6) (3,6) (2,8)
(3,3) (4,4) (3,3,3) (4,6)
(2,2,2) (2,2,4) (5,5)
(2,2,2,2) (2,2,6)
(2,4,4)
(2,2,2,4)
(2,2,2,2,2)
The a(19) = 3 necklace compositions are: (19), (3,6,4,6), (2,2,6,3,6).
The non-necklace, non-circular version is
A178470.
The version for indivisibility (rather than co-primality) is
A328600.
The circularly coprime (as opposed to anti-coprime) version is
A328597.
Partitions with no consecutive parts relatively prime are
A328187.
Cf.
A000031,
A000740,
A008965,
A032153,
A318728,
A318729,
A318748,
A328172,
A328188,
A328220,
A328335,
A328336,
A328601,
A328609.
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@Not/@CoprimeQ@@@Partition[#,2,1,1]&]],{n,10}]
-
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->gcd(i,j)<>1))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019
Comments