A328432
Number of inversion sequences of length n avoiding the consecutive patterns 010, 021, and 120.
Original entry on oeis.org
1, 1, 2, 5, 15, 53, 216, 994, 5076, 28403, 172538, 1129511, 7919314, 59150556, 468504022, 3919569708, 34518111783, 319030219223, 3086250047021, 31174921402976, 328110078110137, 3591110146030066, 40800503952916639, 480429785491094856, 5854374278697301978
Offset: 0
The a(4)=15 length 4 inversion sequences avoiding the consecutive patterns 010, 021, 120 and are 0000, 0110, 0001, 0011, 0111, 0002, 0012, 0112, 0022, 0122, 0003, 0013, 0113, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328433,
A328434,
A328435,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i < x, 0, b(n - 1, i, i > x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, n, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i < x, 0, b[n - 1, i, i > x]], {i, 0, n - 1}]];
a[n_] := b[n, n, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328434
Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, 201, and 210.
Original entry on oeis.org
1, 1, 2, 6, 21, 81, 346, 1630, 8350, 45958, 269815, 1681285, 11071336, 76743040, 558062437, 4244853573, 33687390663, 278296576327, 2388351295760, 21254019548162, 195801111412320, 1864508416302520, 18326903140310011, 185711672802101781, 1937795878138303715
Offset: 0
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, 201, and 210 are 0101, 0102 and 0103.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328435,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n=0, 1, add(
`if`(t and i>x, 0, b(n-1, i, i<>x and x>-1)), i=0..n-1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i > x, 0, b[n - 1, i, i != x && x > -1]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328435
Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, and 201.
Original entry on oeis.org
1, 1, 2, 6, 21, 83, 368, 1814, 9837, 58095, 370499, 2534374, 18493023, 143280489, 1173971656, 10136279104, 91936857611, 873547634921, 8673546319685, 89796095349193, 967384904147690, 10825116242427973, 125613702370667158, 1509222589338456874, 18748890945849736182
Offset: 0
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, and 201 are 0101, 0102, and 0103.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x < i, 0, b(n - 1, i, i < x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328436
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 001.
Original entry on oeis.org
1, 1, 2, 3, 9, 37, 190, 1181, 8564, 70914, 659810, 6811371, 77232836, 953969548, 12747856402, 183218649413, 2818050980941, 46182485773217, 803323102085452, 14781372445602234, 286838921699435184, 5854404018902152208, 125367868007259046305, 2810511319383912299122
Offset: 0
The a(4)=9 length 4 inversion sequences avoiding the consecutive patterns 000 and 001 are 0100, 0110, 0120, 0101, 0121, 0102, 0122, 0103, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i = x, 0, b(n - 1, i, i <= x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i == x, 0, b[n - 1, i, i <= x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328438
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 011.
Original entry on oeis.org
1, 1, 2, 4, 13, 57, 304, 1937, 14315, 120264, 1131896, 11794453, 134774963, 1675630582, 22516745452, 325188337067, 5022796990606, 82620491929333, 1441894214312037, 26609607869036180, 517741915593936360, 10592513721179374467, 227325651424365263577, 5106351205789851629476
Offset: 0
The a(4)=13 length 4 inversion sequences avoiding the consecutive patterns 000 and 011 are 0100, 0010, 0020, 0120, 0101, 0021, 0121, 0102, 0012, 0103, 0013, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i <= x, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
Comments