cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A329577 For every n >= 0, exactly seven sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct nonnegative numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 24, 9, 5, 7, 11, 10, 8, 14, 12, 29, 15, 17, 13, 16, 30, 18, 23, 19, 20, 41, 45, 22, 38, 26, 25, 27, 28, 75, 21, 33, 34, 39, 31, 40, 36, 32, 35, 37, 42, 47, 49, 54, 48, 52, 53, 43, 44, 55, 84, 46, 50, 57, 51, 59, 56, 60, 71, 92, 68, 63, 83, 66, 61, 131, 62, 96, 58, 65, 102, 69, 77, 164
Offset: 0

Views

Author

M. F. Hasler, Nov 17 2019

Keywords

Comments

That is, there are 7 primes, counted with multiplicity, among the 21 pairwise sums of any 7 consecutive terms.
Is this a permutation of the nonnegative integers?
If so, then the restriction to [1..oo) is a permutation of the positive integers, but not the lexicographically earliest one with this property, which starts (1, 2, 3, 4, 5, 6, 89, 8, 7, 9, 10, 11, 14, 12, 17, 19, 18, 13, ...).

Crossrefs

Cf. A329425 (6 primes using 5 consecutive terms), A329566 (6 primes using 6 consecutive terms).
Cf. A329449 (4 primes using 4 consecutive terms), A329455 (4 primes using 5 consecutive terms).
Cf. A329454 (3 primes using 4 consecutive terms), A329455 (3 primes using 5 consecutive terms).
Cf. A329411 (2 primes using 3 consecutive terms), A329452 (2 primes using 4 consecutive terms), A329453 (2 primes using 5 consecutive terms).
Cf. A329333 (1 odd prime using 3 terms), A329450 (0 primes using 3 terms).
Cf. A329405 ff: other variants defined for positive integers.

Programs

  • PARI
    A329577(n,show=0,o=0,N=7,M=6,p=[],U,u=o)={for(n=o,n-1, if(show>0,print1(o", "), show<0,listput(L,o)); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j]))));if(#p
    				

A329412 Lexicographically earliest sequence of distinct positive numbers such that among the pairwise sums of any four consecutive terms there are exactly two prime sums.

Original entry on oeis.org

1, 2, 3, 7, 5, 4, 8, 6, 9, 10, 11, 12, 13, 16, 15, 17, 20, 21, 18, 19, 23, 26, 24, 14, 27, 32, 22, 25, 28, 29, 30, 33, 31, 34, 36, 35, 38, 39, 40, 41, 42, 37, 43, 47, 46, 50, 53, 44, 49, 45, 48, 54, 55, 51, 56, 57, 59, 52, 61, 66, 58, 65, 62, 72, 60, 67, 63, 68, 69, 73, 64, 70, 75, 74, 76, 71, 105
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Nov 14 2019

Keywords

Comments

Conjectured to be a permutation of the positive integers: a(10^5) = 10^5, a(10^6) = 999984 and all numbers below 99992 resp. 999963 have appeared by then. See A329452 for a more detailed discussion. - M. F. Hasler, Nov 15 2019

Examples

			a(1) = 1 is the smallest possible choice; there are no other restrictions so far.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we already have one prime sum (of the required two) with the quadruplet {1, 2, a(3), a(4)}.
a(3) = 3 as 3 is the smallest available integer not leading to a contradiction. Note that as 2 + 3 = 5 we now have the two prime sums required with the quadruplet {1,2,5,a(4)}.
a(4) = 7 as a(4) = 4, 5 or 6 would lead to a contradiction: indeed, both the quadruplets {1, 2, 3, 4}, {1, 2, 3, 5} and {1, 2, 3, 6} will produce three prime sums (instead of two). With a(4) = 7 we have the quadruplet {1, 2, 3, 7} and the two prime sums we are looking for: 1 + 2 = 3 and 2 + 3 = 5.
a(5) = 5 as a(5) = 4 would again lead to a contradiction: indeed, the quadruplet {2, 3, 7, 4} will produce three prime sums (instead of two, they would be 2 + 3 = 5; 3 + 4 = 7 and 7 + 4 = 11). With a(5) = 5 the quadruplet {2, 3, 7, 4} shows exactly the two prime sums we are looking for: 2 + 3 = 5 and 3 + 4 = 7.
And so on.
		

Crossrefs

Cf. A329333 (3 consecutive terms, exactly 1 prime sum).
Cf. A329452 (variant using nonnegative integers).

Programs

  • PARI
    A329412(n,show=0,o=1,p=[],U,u=o)={for(n=o,n-1, show&&print1(o","); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(2<#p,p[^1],p),o); my(c=2-sum(i=2,#p, sum(j=1,i-1,isprime(p[i]+p[j])))); if(#p<3, o=u; next); for(k=u,oo, bittest(U,k-u) || sum(i=1,#p,isprime(p[i]+k))!=c || [o=k, break]));o} \\ Optional args: show=1: print a(o..n-1); o=0: start with a(0)=0 (A329452). - M. F. Hasler, Nov 15 2019

A329568 For all n >= 1, exactly 9 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 6: lexicographically earliest such sequence of distinct positive numbers.

Original entry on oeis.org

1, 2, 3, 9, 4, 10, 27, 14, 33, 57, 26, 40, 87, 50, 21, 63, 16, 20, 51, 8, 81, 93, 46, 56, 15, 58, 135, 183, 28, 44, 39, 88, 69, 123, 34, 68, 105, 128, 45, 129, 22, 52, 141, 38, 75, 159, 32, 82, 99, 64, 117, 147, 80, 94, 177, 116, 237, 273, 74, 100, 387, 76, 207, 357, 62, 104, 165, 86, 77, 95
Offset: 1

Views

Author

M. F. Hasler, Feb 10 2020

Keywords

Comments

That is, there are nine primes, counted with multiplicity, among the 15 pairwise sums of any six consecutive terms. This is the maximum number of possible prime sums for any set of 6 numbers > 1, see wiki page for details.
Conjectured to be a permutation of the positive integers. See A329569 = (0, 1, 2, 5, 6, 11, 12, 17, ...) for the quite different variant for nonnegative integers.
For n > 6, a(n) is the smallest number not used earlier such that the set a(n) + {a(n-5), ..., a(n-1)} has the same number of primes as a(n-6) + {a(n-5), ..., a(n-1)}. Such a number always exists, by definition of the sequence. (If it would not exist for a given n, the term a(n-1) (or earlier) "was wrong and must be corrected", so to say.) See the wiki page for further considerations about existence and surjectivity.
For a(4), one must exclude the values {4, ..., 8} to get an infinite sequence, but for all other (at least several hundred) terms, the greedy choice gives the correct solution.

Crossrefs

Cf. A055265, A128280 (1 prime from 2 terms), A329333 (1 prime from 3 terms), A329405, ..., A329417 (N primes from M terms >= 1), A329425, A329449, ..., A329581 (N primes from M terms >= 0).

Programs

  • PARI
    {A329568(n,show=0,o=1,N=9,M=5,X=[[4,x]|x<-[4..8]],p=[],u=o,U)=for(n=o+1,n, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo,bittest(U,k-u)|| min(c-#[0|x<-p,isprime(x+k)],#p>=M)|| setsearch(X,[n,k])|| [o=k,break])); show&&print([u]);o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. Parameters N,M,o,... allow getting other variants, see the wiki page for more.

A329569 For all n >= 0, exactly 9 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 6: lexicographically earliest such sequence of distinct nonnegative numbers.

Original entry on oeis.org

0, 1, 2, 5, 6, 11, 12, 17, 26, 35, 36, 47, 24, 77, 32, 65, 62, 149, 74, 9, 8, 39, 14, 15, 4, 3, 28, 33, 38, 69, 10, 51, 20, 21, 58, 93, 16, 81, 46, 13, 70, 27, 76, 37, 34, 97, 52, 7, 30, 49, 40, 31, 22, 67, 82, 19, 42, 25, 64, 85, 18, 109, 54, 43, 88, 139, 84, 145, 94, 79, 112, 55, 48, 289, 144
Offset: 0

Views

Author

M. F. Hasler, Feb 10 2020

Keywords

Comments

That is, there are nine primes, counted with multiplicity, among the 15 pairwise sums of any six consecutive terms. This is the maximum: there can't be more than 9 primes among the pairwise sums of any 6 numbers > 1, cf. wiki page in LINKS.
Conjectured to be a permutation of the nonnegative integers. The restriction to [1,oo) is then a permutation of the positive integers with similar properties, but different from the lexico-smallest one, A329568 = (1, 2, 3, 9, 4, 10, 27, ...).
For n > 5, a(n) is the smallest number not used earlier such that the set a(n) + {a(n-5), ..., a(n-1)} has the same number of primes as a(n-6) + {a(n-5), ..., a(n-1)}. Such a number always exists, by definition of the sequence. (If it would not exist for a given n, the term a(n-1) (or earlier) "is wrong and must be corrected", so to say.) See the wiki page for further considerations about existence and surjectivity.
For a(3) and a(4), one must exclude values 3 & 4 to be able to continue the sequence indefinitely, but in all other cases (at least for several hundred terms), the greedy choice gives the correct solution.
The values 3, 4 and 7 appear quite late at indices 25, 24 resp. 47.

Crossrefs

Cf. A055265, A128280 (1 prime from 2 terms), A329333 (1 prime from 3 terms), A329405, ..., A329416 (N primes from M terms >= 1), A329425, A329449, ..., A329581 (N primes from M terms >= 0).

Programs

  • PARI
    {A329569(n,show=0,o=0,N=9,M=5,X=[[3,3],[3,4],[4,3],[4,4]],p=[],u=o,U)=for(n=o+1,n, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo,bittest(U,k-u)|| min(c-#[0|x<-p,isprime(x+k)],#p>=M)|| setsearch(X,[n,k])|| [o=k,break])); show&&print([u]);o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. Parameters N,M,o,... allow getting other variants, see the wiki page for more.

A329579 For every n >= 0, exactly nine sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct nonnegative numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 20, 9, 10, 8, 33, 11, 6, 50, 21, 17, 56, 12, 47, 14, 26, 7, 125, 15, 24, 83, 54, 66, 13, 35, 22, 18, 19, 48, 23, 31, 28, 30, 25, 16, 36, 42, 121, 29, 43, 37, 46, 70, 72, 60, 27, 79, 67, 40, 34, 39, 32, 69, 38, 41, 44, 45, 51, 58, 62, 86, 52, 53, 105, 171, 65, 74, 146, 68, 63, 123, 76
Offset: 0

Views

Author

M. F. Hasler, Nov 17 2019

Keywords

Comments

That is, there are 9 primes, counted with multiplicity, among the 21 pairwise sums of any 7 consecutive terms.
Is this a permutation of the nonnegative integers?
If so, then the restriction to [1..oo) is a permutation of the positive integers, but maybe not the lexicographically earliest one with this property.

Crossrefs

Cf. A329577 (7 primes using 7 consecutive terms), A329566 (6 primes using 6 consecutive terms), A329449 (4 primes using 4 consecutive terms).
Cf. A329425 (6 primes using 5 consecutive terms), A329455 (4 primes using 5 consecutive terms), A329455 (3 primes using 5 consecutive terms), A329453 (2 primes using 5 consecutive terms), A329452 (2 primes using 4 consecutive terms).
Cf. A329454 (3 primes using 4 consecutive terms), A329411 (2 primes using 3 consecutive terms), A329333 (1 odd prime using 3 terms), A329450 (0 primes using 3 terms).
Cf. A329405 ff: other variants defined for positive integers.

Programs

  • PARI
    A329579(n,show=0,o=0,N=9,M=6,p=[],U,u=o)={for(n=o,n-1, if(show>0,print1(o", "), show<0,listput(L,o)); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j]))));if(#p
    				

A329580 For every n >= 0, exactly 10 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 8: lexicographically earliest such sequence of distinct nonnegative numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 90, 7, 11, 8, 9, 10, 12, 13, 30, 29, 31, 14, 16, 15, 17, 22, 42, 19, 25, 18, 24, 20, 23, 28, 33, 43, 35, 36, 38, 26, 21, 32, 27, 34, 71, 37, 39, 40, 44, 63, 64, 68, 41, 46, 183, 50, 45, 333, 51, 98, 47, 58, 62, 69, 65, 48, 101, 66, 49, 61, 78, 57, 53, 180, 52, 55, 96, 631, 54, 56, 83, 75, 95, 74, 116, 60
Offset: 0

Views

Author

M. F. Hasler, Nov 17 2019

Keywords

Comments

That is, there are 10 primes, counted with multiplicity, among the 28 pairwise sums of any 8 consecutive terms.
Is this a permutation of the nonnegative integers?
If so, then the restriction to [1..oo) is a permutation of the positive integers, but not the lexicographically earliest one with this property, which starts (1, 2, 3, 4, 5, 6, 7, 19, 10, 8, 9, 12, 11, 18, 13, 29, ...).
We remark the surprisingly large numbers 333 and 631 among the first terms.

Examples

			In P(7) := {0, 1, 2, 3, 4, 5, 6} there are already S(7) := 10 primes 0+2, 0+3, 0+5, 1+2, 1+4, 1+6, 2+3, 2+5, 3+4, 5+6 among the pairwise sums, so the next term a(7) must not produce any more primes when added to elements of P(7). We find that a(7) = 90 is the smallest possible term.
Then in P(8) = {1, 2, 3, 4, 5, 6, 90} there are S(8) = 7 primes among the pairwise sums, so a(8) must produce 3 more primes when added to elements of P(8). We find a(8) = 7 is the smallest possibility (with 4+7, 6+7 and 90+7).
And so on.
		

Crossrefs

Cf. A329579 (9 primes using 7 consecutive terms), A329425 (6 primes using 5 consecutive terms).
Cf. A329455 (4 primes using 5 consecutive terms), A329455 (3 primes using 5 consecutive terms), A329453 (2 primes using 5 consecutive terms), A329452 (2 primes using 4 consecutive terms).
Cf. A329577 (7 primes using 7 consecutive terms), A329566 (6 primes using 6 consecutive terms), A329449 (4 primes using 4 consecutive terms).
Cf. A329454 (3 primes using 4 consecutive terms), A329411 (2 primes using 3 consecutive terms), A329333 (1 odd prime using 3 terms), A329450 (0 primes using 3 terms).
Cf. A329405 ff: other variants defined for positive integers.

Programs

  • PARI
    A329580(n,show=0,o=0,N=10,M=7,p=[],U,u=o)={for(n=o,n-1, if(show>0,print1(o", "), show<0,listput(L,o)); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j]))));if(#p
    				

A329413 Lexicographically earliest sequence of distinct positive numbers such that among the pairwise sums of any five consecutive terms there are exactly two prime sums.

Original entry on oeis.org

1, 2, 3, 7, 13, 5, 8, 9, 17, 16, 4, 6, 11, 12, 10, 14, 15, 21, 18, 19, 20, 30, 22, 24, 29, 26, 23, 25, 36, 32, 33, 27, 28, 37, 31, 39, 35, 34, 38, 42, 44, 41, 40, 43, 45, 46, 47, 50, 52, 49, 65, 53, 51, 54, 55, 57, 48, 60, 56, 59, 61, 71, 70, 67, 58, 64, 62, 63, 68, 66, 73, 72, 69, 76, 75, 74, 78, 80
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Nov 14 2019

Keywords

Comments

Conjectured to be a permutation of the positive integers: a(10^6) = 10^6 + 9 and all numbers below 10^6 - 7 are used at that point. - M. F. Hasler, Nov 15 2019

Examples

			a(1) = 1 is the smallest possible choice for the first term.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we already have one prime sum (on the required two) with the 5-tuple {1,2,a(3),a(4),a(5)}.
a(3) = 3 as 3 is the smallest available integer not leading to a contradiction. Note that as 2 + 3 = 5 we now have the two prime sums required with the 5-tuple {1,2,3,a(4),a(5)}.
a(4) = 7 as a(4) = 4, 5 or 6 would lead to a contradiction: indeed, the quintuplets {1,2,3,4,a(5)}, {1,2,3,5,a(5)} and {1,2,3,6,a(5)} will produce more than the two required prime sums. With a(4) = 7 we have no contradiction as the 5-tuple {1,2,3,7,a(5)} has now exactly two prime sums: 1 + 2 = 3 and 2 + 3 = 5.
a(5) = 13 as a(5) = 4, 5, 6, 8, 9, 10, 11 or 12 would again lead to a contradiction (more than 2 prime sums with the 5-tuple); in combination with any other term before it, a(5) = 13 will produce only composite sums.
a(6) = 5 as 5 is the smallest available integer not leading to a contradiction: indeed, the 5-tuple {2,3,7,13,5} shows exactly the two prime sums we are looking for: 2 + 3 = 5 and 2 + 5 = 7.
And so on.
		

Crossrefs

Cf. A329333 (3 consecutive terms, exactly 1 prime sum). See also A329450, A329452 onwards.

Programs

  • PARI
    A329413(n,show=0,o=1,N=2,M=4,p=[],U,u=o)={for(n=o,n-1, show&&print1(o","); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); my(c=N-sum(i=2,#p,sum(j=1,i-1,isprime(p[i]+p[j])))); if(#pA329453), N, M: produce N primes using M+1 consecutive terms. - M. F. Hasler, Nov 15 2019

A329572 For all n >= 0, exactly 12 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct nonnegative numbers.

Original entry on oeis.org

0, 1, 2, 5, 6, 11, 12, 17, 26, 35, 36, 47, 24, 54, 77, 7, 43, 60, 13, 30, 96, 4, 67, 97, 16, 133, 34, 3, 40, 27, 63, 100, 10, 20, 171, 9, 8, 51, 21, 22, 52, 15, 32, 38, 75, 141, 56, 41, 71, 122, 152, 45, 68, 29, 59, 14, 39, 44, 50, 23, 53, 57, 74, 107, 170, 176, 93, 134, 137, 86, 177, 65, 476, 62, 87, 92, 101
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

That is, there are 12 primes, counted with multiplicity, among the 21 pairwise sums of any 7 consecutive terms.
This is the theoretical maximum: there can't be more than 12 primes in pairwise sums of 7 distinct numbers > 1. See the wiki page for more details.
Conjectured to be a permutation of the nonnegative integers. See A329573 for the "positive" variant: same definition but with offset 1 and positive terms, leading to a quite different sequence.
For a(3) and a(4) resp. a(5) one must forbid the values < 5 resp. < 11 which would be the greedy choices, in order to get a solution for a(7), but from then on, the greedy choice gives the correct solution, at least for several hundred terms.

Crossrefs

Cf. A055273 (analog starting with a(1) = 1), A055265 & A128280 (1 prime using 2 terms), A055266 & A253074 (0 primes using 2 terms), A329405 - A329416, A329425, A329333, A329449 - A329456, A329563 - A329581.

Programs

  • PARI
    {A329572(n,show=0,o=0,N=12,M=6,D=[3,5,4,6,5,11],p=[],u=o,U)=for(n=o+1,n, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); D&& D[1]==n&& [o=D[2],D=D[3..-1]]&& next; my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo,bittest(U,k-u)|| min(c-#[0|p<-p,isprime(p+k)],#p>=M)|| [o=k,break]));show&&print([u]);o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. See the wiki page for more.

A329573 For all n >= 1, exactly 12 sums are prime among a(n+i) + a(n+j), 0 <= i < j < 7; lexicographically earliest such sequence of distinct positive numbers.

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 27, 14, 20, 33, 34, 69, 39, 28, 40, 13, 19, 70, 31, 43, 180, 220, 61, 36, 66, 91, 127, 7, 12, 5, 102, 186, 11, 6, 25, 18, 55, 41, 42, 48, 65, 72, 59, 38, 125, 24, 29, 35, 54, 32, 47, 77, 164, 26, 407, 15, 116, 63, 75, 404, 416, 8, 215, 45, 56, 183, 23, 134, 206, 17, 44, 50
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

That is, there are 12 primes, counted with multiplicity, among the 21 pairwise sums of any 7 consecutive terms.
This is the theoretical maximum: there can't be more than 12 primes in pairwise sums of 7 distinct numbers > 1. See the wiki page for more details.
Conjectured to be a permutation of the positive integers. See A329572 for the nonnegative variant (same definition but with n >= 0 and terms >= 0), leading to a quite different sequence.
For a(5) and a(6) one must forbid values up to 8 in order to be able to find a solution for a(7), but from then on, the greedy choice gives the correct solution, at least for several hundred terms. Small values appearing late are a(30) = 5, a(34) = 6, a(28) = 7, a(62) = 8.

Examples

			Up to and including the 6th term, there is no constraint other than not using a term more than once, since it is impossible to have more than 12 primes as pairwise sums of 6 numbers. So one would first try to use the lexicographically smallest possible choice a(1..6) =?= (1, 2, ..., 6). But then one would have only 7 pairs (i,j) such that a(i) + a(j) is prime, 1 <= i < j <= 6. So one would need 12 - 7 = 5 more primes in {1, 2, ..., 6} + a(7), which is impossible. One can check that even a(1..5) =?= (1,...,5) does not allow one to find a(6) and a(7) in order to have 12 prime sums a(i) + a(j), 1 <= i < j <= 7. Nor is it possible to find a solution with a(5) equal to 6 or 7 or 8. One finds that a(5) = 9, and a(6) = 10, are the smallest possible choices for which a(7) can be found as to satisfy the requirement. In that case, a(7) = 27 is the smallest possible solution, which yields the 12 prime sums 1+2, 2+3, 1+4, 3+4, 2+9, 4+9, 1+10, 3+10, 9+10, 2+27, 4+27, 10+27.
Now, to satisfy the definition of the sequence for n = 2, we drop the initial 1 from the set of consecutive terms, and search for a(8) producing the same number of additional primes together with {2, 3, 4, 9, 10, 27} as did a(1) = 1, namely 3. We see that a(8) = 14 is the smallest possibility. And so on.
It seems that once a(5) and a(6) are chosen, one may always take the smallest possible choice for the next term without ever again running into difficulty. This is in strong contrast to the (exceptional) case of the variant where we require 10 prime sums among 7 consecutive terms, cf. sequence A329574.
		

Crossrefs

Cf. A055272 (analog starting with a(0)=0), A055265 & A128280 (1 prime using 2 terms), A055266 & A253074 (0 primes using 2 terms), A329405 - A329416, A329425, A329333, A329449 - A329456, A329563 - A329581.

Programs

  • PARI
    {A329573(n,show=0,o=1,N=12,M=6,D=[5,9,6,10],p=[],u=o,U)=for(n=o+1,n, show>0&& print1(o","); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M,p[^1],p),o); D&& D[1]==n&& [o=D[2],D=D[3..-1]]&& next; my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo,bittest(U,k-u)|| min(c-#[0|p<-p,isprime(p+k)],#p>=M)|| [o=k,break]));show&&print([u]);o} \\ optional args: show=1: print a(o..n-1), show=-1: append them on global list L, in both cases print [least unused number] at the end. See the wiki page for more.

A329409 Lexicographically earliest sequence of distinct positive numbers such that among the pairwise sums of any seven consecutive terms there is exactly one prime sum.

Original entry on oeis.org

1, 2, 7, 8, 13, 14, 19, 36, 20, 6, 26, 4, 16, 49, 28, 29, 23, 5, 9, 11, 17, 10, 15, 25, 35, 3, 39, 30, 24, 21, 27, 31, 18, 33, 12, 37, 45, 32, 40, 48, 38, 50, 42, 43, 22, 46, 34, 44, 52, 41, 53, 47, 58, 64, 57, 51, 59, 61, 60, 54, 63, 65, 56, 55, 69, 67, 66, 77, 68, 75, 78, 70, 72, 84, 62, 80, 81, 74, 71
Offset: 1

Views

Author

Eric Angelini and Jean-Marc Falcoz, Nov 13 2019

Keywords

Examples

			a(1) = 1 by minimality.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we have already the prime sum we need.
a(3) = 7 as a(3) = 3, 4, 5 or 6 would produce at least a prime sum too many.
a(4) = 8 as a(4) = 3, 4, 5 or 6 would again produce at least a prime sum too many.
a(5) = 13 as a(5) = 3, 4, 5, 6, 9, 10, 11 or 12 would also produce at least one prime sum too many.
a(6) = 14 as a(6) = 14 doesn't produce an extra prime sum - only composite sums.
a(7) = 19 as a(7) = 15, 16, 17 or 18 would produce at least a prime sum too many.
a(8) = 36 is the smallest available integer that produces the single prime sum we need among the last 7 integers {2, 7, 8, 13, 14, 19, 36}, which is 43 = 36 + 7.
And so on.
		

Crossrefs

Cf. A329333 (3 consecutive terms, exactly 1 prime sum). See also A329450, A329452 onwards.
Previous Showing 21-30 of 39 results. Next