cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A367353 Analog of A121805, but starting with 9.

Original entry on oeis.org

9, 100, 101, 112, 133, 164, 206, 268, 351, 364, 408, 492, 517, 592, 618, 705, 762, 789, 887, 966, 1027, 1098, 1179, 1270, 1271, 1282, 1303, 1334, 1375, 1426, 1487, 1558, 1639, 1730, 1731, 1742, 1763, 1794, 1835, 1886, 1947, 2019, 2111, 2123, 2155, 2207, 2279, 2371
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2023

Keywords

Comments

Contains 19511030 terms, the last being 999999936.

Crossrefs

Comma sequences in base 10, starting with 1, 2, 4, 5, 6, 7, 8, 9, 10 are A121805, A139284, A366492, A367337, A367350, A367351, A367352, A367353, A367354. Starting with 3 is trivial, and those starting with 11, 12, 13 are essentially duplicates.

Programs

  • Mathematica
    b = 10; m = b - 1; a[1] = 9; a[n_] := a[n] = For[r = Mod[a[n - 1], b]; y = 0, y <= m, y++, If[y == IntegerDigits[#, b][[1]], Return[#]] &[a[n - 1] + b r + y]]; Array[a, 45] (* Michael De Vlieger, Nov 18 2023, after Jean-François Alcover at A121805 *)
  • Python
    from itertools import islice
    def agen(start=9): # generator of terms
        an, y = start, 1
        while y < 10:
            yield an
            an, y = an + 10*(an%10), 1
            while y < 10:
                if str(an+y)[0] == str(y):
                    an += y
                    break
                y += 1
    print(list(islice(agen(), 50))) # Michael S. Branicky, Nov 18 2023

A367354 Analog of A121805, but starting with 10.

Original entry on oeis.org

10, 11, 23, 58, 139, 231, 243, 275, 328, 412, 436, 501, 516, 581, 596, 662, 688, 775, 833, 871, 889, 988, 1069, 1160, 1161, 1172, 1193, 1224, 1265, 1316, 1377, 1448, 1529, 1620, 1621, 1632, 1653, 1684, 1725, 1776, 1837, 1908, 1989, 2081, 2093, 2125, 2177, 2249, 2341, 2353
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2023

Keywords

Comments

Contains 20573 terms, the last of which is 999936.

Crossrefs

Comma sequences in base 10, starting with 1, 2, 4, 5, 6, 7, 8, 9, 10 are A121805, A139284, A366492, A367337, A367350, A367351, A367352, A367353, A367354. Starting with 3 is trivial, and those starting with 11, 12, 13 are essentially duplicates.

Programs

  • Mathematica
    a[1] = b = 10; m = b - 1; a[n_] := a[n] = For[r = Mod[a[n - 1], b]; y = 0, y <= m, y++, If[y == IntegerDigits[#, b][[1]], Return[#]] &[a[n - 1] + b r + y]]; Array[a, 50] (* Michael De Vlieger, Nov 18 2023, after Jean-François Alcover at A121805 *)
  • Python
    from itertools import islice
    def agen(start=10): # generator of terms
        an, y = start, 1
        while y < 10:
            yield an
            an, y = an + 10*(an%10), 1
            while y < 10:
                if str(an+y)[0] == str(y):
                    an += y
                    break
                y += 1
    print(list(islice(agen(), 50))) # Michael S. Branicky, Nov 18 2023

A367356 Length of base-3 Commas sequence when started at n.

Original entry on oeis.org

17, 5, 2, 1, 16, 164, 490, 163, 4, 3, 489, 15, 14, 2, 162, 161, 13, 1472, 488, 1471, 160, 1, 159, 487, 12, 486, 1470, 1469, 11, 158, 157, 1468, 485, 484, 156, 10, 9, 483, 1467, 1466, 8, 155, 154, 1465, 482, 481, 153, 7, 6, 480, 1464, 1463, 5, 41, 152, 40, 1462, 479, 1461, 151, 4, 150, 478, 39, 477, 3, 1460, 2, 38, 149, 37, 1459, 476, 1458, 148, 1, 147, 475, 36, 474, 1457, 1456, 35, 146, 145, 1455, 473, 472, 144, 34, 33, 471, 1454, 1453, 32, 143, 142, 1452, 470, 469
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2023

Keywords

Comments

a(n) = 1 for n = 4, 22, 76, ... (the numbers 222...2211 in ternary)
We now know that a(n) is finite for all n.

Examples

			For a(1) = 17, see A367355, which has 17 terms.
		

Crossrefs

Programs

  • Python
    from itertools import islice
    from sympy.ntheory.factor_ import digits
    def a(n, b=3): # generator of terms
        an, y, c = n, 1, 0
        while y < b:
            an, y, c = an + b*(an%b), 1, c+1
            while y < b:
                if str(digits(an+y, b)[1]) == str(y):
                    an += y
                    break
                y += 1
        return c
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Nov 18 2023

A367601 a(n) is the number of terms in the analog of A121805 but starting with A037124(n), or -1 if that sequence is infinite.

Original entry on oeis.org

2137453, 194697747222394, 2, 199900, 19706, 209534289952018960, 15, 198104936410, 19511030, 20573, 19278442756937613, 207556412347088426, 2153441655319779164332, 1960210914, 204, 19, 195607586, 21, 19511029, 1922379655900, 15, 1979, 191782579276710577865, 1927
Offset: 1

Views

Author

Keywords

Comments

This is by definition a subsequence of A330128.

Crossrefs

For records see A367602 and A367603.

A367602 Records in A367601.

Original entry on oeis.org

2137453, 194697747222394, 209534289952018960, 2153441655319779164332, 195152998207833388640389, 192648330068920004741771823742285752, 1879472501974027932230497653831908067612145407102, 2071675282852490774827341955075117685752805692835677843166, 20548999112584138590755517725134777010151822745525893951682
Offset: 1

Views

Author

Michael S. Branicky, Dec 06 2023

Keywords

Comments

Is this the same as A367364? - R. J. Mathar, Dec 12 2023

Crossrefs

A367603 Indices of records in A367601.

Original entry on oeis.org

1, 2, 6, 40, 4000, 20000, 80000000000, 40000000000000000000000000000, 30000000000000000000000000000000, 3000000000000000000000000000000000000000, 6000000000000000000000000000000000000000
Offset: 1

Views

Author

Michael S. Branicky, Dec 06 2023

Keywords

Crossrefs

A367366 a(n) = smallest k such that the commas sequence (cf. A121805) with initial term k contains n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 20, 10, 2, 25, 26, 27, 28, 29, 30, 31, 32, 30, 21, 1, 3, 37, 38, 39, 40, 41, 42, 43, 40, 31, 20, 13, 4, 49, 50, 51, 52, 53, 54, 50, 41, 32, 10, 14, 60, 5, 62, 63, 64, 65, 60, 51, 42, 30, 70, 2, 15, 6, 74, 75
Offset: 1

Views

Author

N. J. A. Sloane, Dec 05 2023

Keywords

Comments

Every k >= 1 appears in this sequence exactly A330128(k) times. So there are 2137453 1's, 194697747222394 2's, 2 3's, 209534289952018960 6's, and so on.
a(n) is the most remote ancestor of n in the comma-successor graph.

Examples

			All terms n in A121805 have a(n) = 1, all n in A139284 have a(n) = 2, all n in A366492 have a(n) = 4, and so on.
		

Crossrefs

Programs

  • Python
    def comma_predecessor(n): # A367614(n)
        y = int(str(n)[0])
        x = (n-y)%10
        k = n - y - 10*x
        kk = k + 10*x + y-1
        return k if k > 0 and int(str(kk)[0]) != y-1 else -1
    def a(n):
        an = n
        while (cp:=comma_predecessor(an)) > 0: an = cp
        return an
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Dec 18 2023
Previous Showing 11-17 of 17 results.