cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A364125 Starts of runs of 3 consecutive integers that are Stolarsky-Niven numbers (A364123).

Original entry on oeis.org

1419, 2680, 6984, 18765, 20383, 28390, 48697, 55560, 69056, 121913, 125340, 125341, 125739, 133614, 135189, 136409, 140789, 147563, 150138, 155518, 157068, 171819, 317933, 318188, 319395, 323685, 339723, 340846, 349326, 356290, 371041, 389010, 392903, 393809, 400608
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[10, 3] (* generates the first 10 terms, using the function seq[count, nConsec] from A364124 *)
  • PARI
    lista(10, 3) \\ generates the first 10 terms, using the function lista(count, nConsec) from A364124

A376794 Starts of runs of 3 consecutive integers that are in A376616.

Original entry on oeis.org

38143807, 67141710, 67511743, 67736383, 269912383, 675612223, 1251282942, 2216832254, 4135244542, 4213075438, 4256878846, 4608511334, 5089851270, 5148094783, 5383281343, 5457887279, 5905845439, 7247769919, 7355297535, 7811735295, 8209151742, 8503999231, 8591105023, 9015656767
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2024

Keywords

Examples

			38143807 is a term since 38143807, 38143808 and 38143809 are all in A376616: 38143807/A000120(38143807) = 2934139, and 2934139/A000120(2934139) = 225703 are integers, 38143808/A000120(38143808) = 4767976, and 4767976/A000120(4767976) = 595997 are integers, and 38143809/A000120(38143809) = 4238201, and 4238201/A000120(4238201) = 385291 are integers.
		

Crossrefs

Subsequence of A330932, A376616 and A376793.
Cf. A000120.

Programs

  • Mathematica
    q[k_] := q[k] = Module[{w = DigitCount[k, 2, 1]}, Divisible[k, w] && Divisible[k/w, DigitCount[k/w, 2, 1]]]; Select[Range[10^8], q[#] && q[#+1] && q[#+2] &]
  • PARI
    is1(k) = {my(w = hammingweight(k)); !(k % w) && !((k/w) % hammingweight(k/w));}
    lista(kmax) = {my(q1 = is1(1), q2 = is1(2), q3); for(k = 3, kmax, q3 = is1(k); if(q1 && q2 && q3, print1(k-2, ", ")); q1 = q2; q2 = q3);}

A331090 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negaFibonacci-Niven numbers (A331088).

Original entry on oeis.org

1, 2, 20, 54, 55, 56, 110, 376, 398, 974, 986, 1084, 1744, 2464, 2524, 3304, 3870, 5223, 5718, 6095, 6124, 6184, 6663, 6764, 6844, 7142, 7684, 9035, 9124, 10590, 11598, 11975, 12606, 13444, 13504, 14284, 14915, 17164, 17643, 17710, 17714, 17824, 17884, 18698, 18905, 19494, 23191, 24243, 24785, 25542, 26382, 27390, 29644, 34278, 35464
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

Numbers of the form F(6*k + 2) - 1 and F(6*k + 4) - 1, where F(m) is the m-th Fibonacci number, are terms.
If m is of the form F(k) - 1, where k > 2 is congruent to {2, 10} mod 24, then {-m, -(m + 1), -(m + 2), -(m + 3), -(m + 4)} are 5 consecutive negative negaFibonacci-Niven numbers.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]];
    nConsec = 3; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0;
    k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A334346 Starts of runs of 3 consecutive binary Moran numbers (A334344).

Original entry on oeis.org

126866286, 133542126, 148891086, 150959502, 173668302, 207567342, 227950542, 257154606, 263874222, 284421582, 295075566, 331190766, 373024206, 390589326, 392805486, 393817806, 395760366, 397921806, 441314766, 459700686, 459990702, 516188142, 527006286, 586869966
Offset: 1

Views

Author

Amiram Eldar, Apr 23 2020

Keywords

Examples

			126866286 is a term since 126866286/A000120(126866286) = 7048127, 126866287/A000120(126866287) = 6677173 and 126866288/A000120(126866288) = 7929143 are all prime numbers.
		

Crossrefs

Subsequence of A330932, A334344 and A334345.

Programs

  • Mathematica
    binMoranQ[n_] := PrimeQ[n / DigitCount[n, 2, 1]]; bin = binMoranQ /@ Range[3]; seq = {}; Do[If[And @@ bin, AppendTo[seq, k - 3]]; bin = Join[Rest[bin], {binMoranQ[k]}], {k, 4, 2 * 10^8}]; seq

A363791 Starts of runs of 3 consecutive integers that are primitive binary Niven numbers (A363787).

Original entry on oeis.org

4184046, 5234670, 6285294, 7861230, 8123886, 8255214, 8255215, 8320878, 8353710, 8370126, 8379247, 12238830, 12451631, 12572622, 13623246, 13629935, 14515182, 14646510, 14673870, 14673871, 14679342, 15040494, 15335375, 15449071, 15531759, 15708078, 15986543, 16178670
Offset: 1

Views

Author

Amiram Eldar, Jun 22 2023

Keywords

Examples

			4184046 is a term since 4184046, 4184047 and 4184048 are all primitive binary Niven numbers.
		

Crossrefs

Subsequence of A049445, A330931, A330932, A363787 and A363790.
A363792 is a subsequence.

Programs

  • Mathematica
    binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; primBinNivQ[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]);
    seq[kmax_] := Module[{tri = primBinNivQ /@ Range[3], s = {}, k = 4}, While[k < kmax, If[And @@ tri, AppendTo[s, k - 3]]; tri = Join[Rest[tri], {primBinNivQ[k]}]; k++]; s]; seq[10^7]
  • PARI
    isbinniv(n) = !(n % hammingweight(n));
    isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2));
    lista(kmax) = {my(tri = vector(3, i, isprim(i)), k = 4); while(k < kmax, if(vecsum(tri) == 3, print1(k-3, ", ")); tri = concat(vecextract(tri, "^1"), isprim(k)); k++); }

A363792 Starts of runs of 4 consecutive integers that are primitive binary Niven numbers (A363787).

Original entry on oeis.org

8255214, 14673870, 29092590, 33185646, 41743854, 47697390, 48069486, 56348622, 56999790, 58116078, 59604462, 60534702, 60813774, 61837038, 62581230, 64069614, 64999854, 65371950, 66581262, 66674286, 75232494, 83418606, 86767470, 88069806, 92255886, 95418702, 96441966, 99511758, 99604782
Offset: 1

Views

Author

Amiram Eldar, Jun 22 2023

Keywords

Comments

There are no runs of 5 or more consecutive integers that are primitive binary Niven numbers (see the second comment in A330933).

Examples

			8255214 is a term since 8255214, 8255215, 8255216 and 8255217 are all primitive binary Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; primBinNivQ[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]);
    seq[kmax_] := Module[{quad = primBinNivQ /@ Range[4], s = {}, k = 5}, While[k < kmax, If[And @@ quad, AppendTo[s, k - 4]]; quad = Join[Rest[quad], {primBinNivQ[k]}]; k++]; s]; seq[3*10^7]
  • PARI
    isbinniv(n) = !(n % hammingweight(n));
    isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2));
    lista(kmax) = {my(quad = vector(4, i, isprim(i)), k = 5); while(k < kmax, if(vecsum(quad) == 4, print1(k-4, ", ")); quad = concat(vecextract(quad, "^1"), isprim(k)); k++); }

A338515 Starts of runs of 3 consecutive numbers that are divisible by the total binary weight of their divisors (A093653).

Original entry on oeis.org

1, 348515, 8612344, 29638764, 30625110, 32039808, 32130600, 32481682, 43664313, 55318282, 55503719, 59671714, 69254000, 73152296, 93470904, 100366594, 103640097, 105026790, 109038462, 109212287, 122519464, 126667271, 147208982, 162007166, 169237545, 173392238
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2020

Keywords

Examples

			1 is a term since 1, 2 and 3 are terms of A093705.
		

Crossrefs

Subsequence of A338514.
Similar sequences: A154701, A330932, A334346, A338453.

Programs

  • Mathematica
    divQ[n_] := Divisible[n, DivisorSum[n, DigitCount[#, 2, 1] &]]; div = divQ /@ Range[3]; Reap[Do[If[And @@ div, Sow[k - 3]]; div = Join[Rest[div], {divQ[k]}], {k, 4, 10^7}]][[2, 1]]

A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 8, 32, 54, 114, 128, 174, 234, 294, 370, 413, 414, 474, 512, 534, 580, 654, 774, 894, 954, 1000, 1014, 1134, 1430, 1734, 1794, 1840, 1854, 1914, 1974, 2034, 2048, 2093, 2094, 2154, 2214, 2334, 2574, 2680, 2694, 2814, 2870, 3054, 3100, 3520, 3773, 3774, 3834
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq
Previous Showing 21-28 of 28 results.