cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A331277 Array read by antidiagonals: A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 6, 1, 1, 0, 1, 62, 31, 1, 1, 0, 1, 900, 2649, 160, 1, 1, 0, 1, 16824, 441061, 116360, 841, 1, 1, 0, 1, 384668, 121105865, 231173330, 5364701, 4494, 1, 1, 0, 1, 10398480, 49615422851, 974787170226, 131147294251, 256452714, 24319, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with k edges and no isolated vertices. When n=2 these objects are graphs.

Examples

			Array begins:
====================================================================
n\k | 0 1    2         3              4            5           6
----+---------------------------------------------------------------
  0 | 1 1    0         0              0            0           0 ...
  1 | 1 1    1         1              1            1           1 ...
  2 | 1 1    6        62            900        16824      384668 ...
  3 | 1 1   31      2649         441061    121105865 49615422851 ...
  4 | 1 1  160    116360      231173330 974787170226 ...
  5 | 1 1  841   5364701   131147294251 ...
  6 | 1 1 4494 256452714 78649359753286 ...
  ...
The A(2,2) = 6 matrices are:
   [1 0]  [1 0]  [1 0]  [1 1]  [1 0]  [1 0]
   [1 0]  [0 1]  [0 1]  [1 0]  [1 1]  [0 1]
   [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [1 1]
   [0 1]  [0 1]  [1 0]
		

Crossrefs

Rows n=1..3 are A000012, A121251, A136245.
Columns k=0..3 are A000012, A000012, A047665, A137219.
The version with nonnegative integer entries is A331278.
The version with not necessarily distinct columns is A330942.
Cf. A262809 (unrestricted version), A331315, A331639.

Programs

  • PARI
    T(n,k)={my(m=n*k); sum(j=0, m, binomial(binomial(j,n), k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n, k) = Sum_{j=0..n*k} binomial(binomial(j,n),k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A262809(n, j)/k!.
A(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k-1, k-j)*A330942(n, j).
A331639(n) = Sum_{d|n} A(n/d, d).

A331397 Number of nonnegative integer matrices with 2 distinct columns and any number of nonzero rows with column sums n and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 2, 14, 128, 1288, 13472, 143840, 1556480, 17006720, 187208192, 2072948224, 23063920640, 257634273280, 2887544053760, 32456082448384, 365710391902208, 4129672996618240, 46721752249794560, 529486122704568320, 6009576477811539968, 68299997524116635648
Offset: 0

Views

Author

Andrew Howroyd, Jan 15 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.

Crossrefs

Column k=2 of A331315.

Programs

  • PARI
    seq(n)={Vec(1/(4*sqrt(1 - 12*x + 4*x^2 + O(x*x^n))) + (3 - 4*x)/(4*(1-2*x)))} \\ Andrew Howroyd, Jan 15 2020

Formula

a(n) = (A052141(n) + A011782(n))/2.
G.f.: 1/(4*sqrt(1 - 12*x + 4*x^2)) + (3 - 4*x)/(4*(1-2*x)).
a(n) = A011782(n) * A226994(n).
D-finite with recurrence n*a(n) +2*(-8*n+5)*a(n-1) +28*(2*n-3)*a(n-2) +8*(-8*n+19)*a(n-3) +16*(n-3)*a(n-4)=0. - R. J. Mathar, Mar 13 2023

A121227 Number of labeled multigraphs with loops and with n edges and no vertex of degree 0.

Original entry on oeis.org

1, 2, 14, 150, 2210, 41642, 956878, 25955630, 811819826, 28764498386, 1138755852990, 49817190098694, 2386544217733906, 124257113538066522, 6986465328614267742, 421887743219324342110, 27231714819135144778722, 1871047822756547798671074
Offset: 0

Views

Author

Vladeta Jovovic, Sep 06 2006

Keywords

Crossrefs

Row n=2 of A331315.
Unlabeled analog is A007717.

Programs

  • Maple
    seq(sum(binomial(m*(m+1)/2+n-1,n)/2^(m+1),m=0..infinity),n=0..10);
  • PARI
    a(n)={sum(k=0, 2*n, binomial(k*(k+1)/2+n-1, n)*sum(r=k, 2*n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 15 2018

Formula

a(n) = Sum_{k=0..2*n} binomial(k*(k+1)/2+n-1, n)*(Sum_{r=k..2*n} binomial(r, k)*(-1)^(r-k)). - Andrew Howroyd, Sep 15 2018
Previous Showing 11-13 of 13 results.