cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A177304 Number of permutations of 6 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 924, 65226, 7426610, 640160976, 54331653686, 4339892975512, 336181036999948, 25328979140590460, 1869147741803280158, 135594223551932310368, 9700134237572864570026, 685890678156217774839644, 48025674779522388568648420, 3334799454210630503054336064
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (6n)!/720^n = A248814(n) for n<=2.

Crossrefs

Column k=6 of A331562.
Cf. A248814.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 21 2020
a(9) from Alois P. Heinz, Jan 23 2020
Terms a(10) and beyond from Andrew Howroyd, May 15 2020

A177307 Number of permutations of 7 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 3432, 623576, 201922730, 48203722464, 11408205434138, 2535604038015218, 546641872918476120, 114573118435555703030, 23513682407867601161354, 4742254932865402388419776, 942857462878069039167940082, 185226548794692635344238756018, 36021105095432337381819132791160
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (7n)!/5040^n = A172603(n) for n<=2.

Crossrefs

Column k=7 of A331562.
Cf. A172603.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 21 2020
Terms a(8) and beyond from Andrew Howroyd, May 15 2020

A177310 Number of permutations of 8 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 12870, 6077196, 5650739930, 3772321496064, 2514046004253110, 1570273521448103668, 951645881858020642746, 560523113474283819256640, 323221203836407773725200718, 183122229346363470922528553652, 102256611847518844993947706000234
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (8n)!/40320^n = A172609(n) for n<=2.

Crossrefs

Column k=8 of A331562.
Cf. A172609.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 21 2020
Terms a(7) and beyond from Andrew Howroyd, May 15 2020

A177313 Number of permutations of 9 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 48620, 60110030, 161686253810, 304100156874800, 574996024253854586, 1016915629343040544250, 1745708356607370063330620, 2911820015993491302722966990, 4754502826758413615581742528138, 7626389809822483147908697112197520, 12055478550658617275428327115583119762
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Comments

a(n) = (9n)!/362880^n = A172613(n) for n<=2.

Crossrefs

Column k=9 of A331562.
Cf. A172613.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020
Terms a(7) and beyond from Andrew Howroyd, May 15 2020

A177318 Number of permutations of n copies of 1..6 with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 2, 86, 10010, 1543862, 276285002, 54331653686, 11408205434138, 2514046004253110, 574996024253854586, 135442141147145037086, 32677132473420748546466, 8041851882854648557516118, 2012484136612620102100796090, 510873291048466091968494930086
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Row n=6 of A331562.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020
a(11)-a(12) from Alois P. Heinz, Jan 22 2020
Terms a(13) and beyond from Andrew Howroyd, May 15 2020

A177319 Number of permutations of n copies of 1..7 with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 2, 148, 41618, 16699380, 8039989002, 4339892975512, 2535604038015218, 1570273521448103668, 1016915629343040544250, 682308706348352869913148, 471167961102713571612302730, 333217453890900855796193690520, 240438319207137787818120695999370
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Row n=7 of A331562.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020
Terms a(8) and beyond from Andrew Howroyd, May 16 2020

A177320 Number of permutations of n copies of 1..8 with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 2, 250, 168284, 175280570, 226901044252, 336181036999948, 546641872918476120, 951645881858020642746, 1745708356607370063330620, 3337797628633312532069739500, 6600171805939224952685745226312, 13419910030462066174528563412581260, 27933944205209773363718168619462715544
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Row n=8 of A331562.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020
Terms a(7) and beyond from Andrew Howroyd, May 15 2020

A177321 Number of permutations of n copies of 1..9 with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 2, 416, 664958, 1792874048, 6232521421502, 25328979140590460, 114573118435555703030, 560523113474283819256640, 2911820015993491302722966990, 15861703283168731825003935183416, 89796737967084981726163781067177194, 524830705066715697873367329722967841532
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Row n=9 of A331562.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2020
Terms a(6) and beyond from Andrew Howroyd, May 15 2020

A331623 Number of sequences with n copies each of 1,2,...,n avoiding absolute differences between adjacent elements larger than one.

Original entry on oeis.org

1, 1, 6, 92, 11482, 8956752, 54331653686, 2535604038015218, 951645881858020642746, 2911820015993491302722966990, 73784388170659542104264761249115686, 15642058800086197220958447712819197014917632, 27980772370697320617389378491983217784996780441605354
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2020

Keywords

Examples

			a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 6: 1122, 1212, 1221, 2112, 2121, 2211.
a(3) = 92: 111222333, 111223233, 111223323, 111223332, ..., 333221112, 333221121, 333221211, 333222111.
		

Crossrefs

Main diagonal of A331562.
Cf. A034841.

Programs

  • Maple
    b:= proc(l, q) option remember; (n-> `if`(n<2, 1, add(
         `if`(l[j]=1, `if`(j in [1, n], b(subsop(j=[][], l),
         `if`(j=1, 0, n)), 0), b(subsop(j=l[j]-1, l), j)), j=
         `if`(q<0, 1..n, max(1, q-1)..min(n, q+1)))))(nops(l))
        end:
    a:= n-> b([n$n], -1):
    seq(a(n), n=0..6);
  • Mathematica
    b[l_, q_] := b[l, q] = With[{n = Length[l]}, If[n < 2, 1, Sum[
          If[l[[j]] == 1, If[j == 1 || j == n, b[ReplacePart[l, j -> Nothing],
          If[j == 1, 0, n]], 0], b[ReplacePart[l, j -> l[[j]] - 1], j]], {j,
          If[q < 0, Range[n], Range[Max[1, q - 1], Min[n, q + 1]]]}]]];
    a[n_] := b[Table[n, {n}], -1];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 8}] (* Jean-François Alcover, Jan 04 2021, after Alois P. Heinz *)

Formula

a(n) = A331562(n,n).

Extensions

a(9)-a(12) (using new data provided by Andrew Howroyd in A331562) from Alois P. Heinz, Sep 01 2020
Previous Showing 11-19 of 19 results.