A339193
Matula-Goebel numbers of unlabeled binary rooted semi-identity trees.
Original entry on oeis.org
1, 4, 14, 86, 301, 886, 3101, 3986, 13766, 13951, 19049, 48181, 57026, 75266, 85699, 199591, 263431, 295969, 298154, 302426, 426058, 882899
Offset: 1
The sequence of terms together with the corresponding unlabeled rooted trees begins:
1: o
4: (oo)
14: (o(oo))
86: (o(o(oo)))
301: ((oo)(o(oo)))
886: (o(o(o(oo))))
3101: ((oo)(o(o(oo))))
3986: (o((oo)(o(oo))))
13766: (o(o(o(o(oo)))))
13951: ((oo)((oo)(o(oo))))
19049: ((o(oo))(o(o(oo))))
48181: ((oo)(o(o(o(oo)))))
57026: (o((oo)(o(o(oo)))))
75266: (o(o((oo)(o(oo)))))
85699: ((o(oo))((oo)(o(oo))))
Counting these trees by number of nodes gives
A063895.
A000081 counts unlabeled rooted trees with n nodes.
A331965 ranks lone-child avoiding semi-identity trees, counted by
A331966.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
mgbiQ[n_]:=Or[n==1,n==4,SquareFreeQ[n]&&PrimeOmega[n]==2&&And@@mgbiQ/@primeMS[n]];
Select[Range[1000],mgbiQ]
A343663
Number of unlabeled binary rooted semi-identity plane trees with 2*n - 1 nodes.
Original entry on oeis.org
1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920, 44442, 154596, 542336, 1917648, 6825464, 24439008, 87962312, 318087216, 1155090092, 4210494616, 15400782912, 56508464736, 207935588586, 767162495940, 2837260332472, 10516827106016, 39063666532784, 145378611426512
Offset: 1
The a(1) = 1 through a(5) = 12 trees:
o (oo) ((oo)o) (((oo)o)o) ((((oo)o)o)o)
(o(oo)) ((o(oo))o) (((o(oo))o)o)
(o((oo)o)) (((oo)o)(oo))
(o(o(oo))) ((o((oo)o))o)
((o(o(oo)))o)
((o(oo))(oo))
((oo)((oo)o))
((oo)(o(oo)))
(o(((oo)o)o))
(o((o(oo))o))
(o(o((oo)o)))
(o(o(o(oo))))
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Samuele Giraudo, The combinator M and the Mockingbird lattice, arXiv:2204.03586 [math.CO], 2022.
- Samuele Giraudo, Mockingbird lattices, Séminaire Lotharingien de Combinatoire XX, Proceedings of the 34th Conf. on Formal Power, Series and Algebraic Combinatorics (Bangalore, India, 2022).
The not necessarily semi-identity version is
A000108.
The Matula-Goebel numbers in the non-plane case are
A339193.
The not-necessarily binary version is
A343937.
A000081 counts unlabeled rooted trees with n nodes.
A331966 counts lone-child avoiding semi-identity trees, ranked by
A331965.
-
crsiq[n_]:=Join@@Table[Select[Union[Tuples[crsiq/@ptn]],#=={}||#=={{},{}}||Length[#]==2&&(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}];
Table[Length[crsiq[n]],{n,1,11,2}]
(* Second program: *)
m = 29; p[_] = 1;
Do[p[x_] = 1 + x + x (p[x]^2 - p[x^2]) + O[x]^m // Normal, {m}];
CoefficientList[p[x], x] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
-
seq(n)={my(p=O(1)); for(n=1, n, p=1 + x + x*(p^2-subst(p,x,x^2))); Vec(p)} \\ Andrew Howroyd, May 07 2021
A343937
Number of unlabeled semi-identity plane trees with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 13, 38, 117, 375, 1224, 4095, 13925, 48006, 167259, 588189, 2084948, 7442125, 26725125, 96485782, 350002509, 1275061385, 4662936808, 17111964241, 62996437297, 232589316700, 861028450579, 3195272504259, 11884475937910, 44295733523881, 165420418500155
Offset: 1
The a(1) = 1 through a(5) = 13 trees are the following. The number of nodes is the number of o's plus the number of brackets (...).
o (o) (oo) (ooo) (oooo)
((o)) ((o)o) ((o)oo)
((oo)) ((oo)o)
(o(o)) ((ooo))
(((o))) (o(o)o)
(o(oo))
(oo(o))
(((o))o)
(((o)o))
(((oo)))
((o(o)))
(o((o)))
((((o))))
The not necessarily semi-identity version is
A000108.
A000081 counts unlabeled rooted trees with n nodes.
A331966 counts lone-child avoiding semi-identity trees, ranked by
A331965.
-
arsiq[n_]:=Join@@Table[Select[Union[Tuples[arsiq/@ptn]],#=={}||(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}];
Table[Length[arsiq[n]],{n,10}]
-
F(p)={my(n=serprec(p,x)-1, q=exp(x*y + O(x*x^n))*prod(k=2, n, (1 + y*x^k + O(x*x^n))^polcoef(p,k,x)) ); sum(k=0, n, k!*polcoef(q,k,y))}
seq(n)={my(p=O(x)); for(n=1, n, p=x*F(p)); Vec(p)} \\ Andrew Howroyd, May 08 2021
Comments