cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A072705 Triangle of number of unimodal compositions of n into exactly k distinct terms.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 0, 0, 1, 4, 0, 0, 0, 1, 4, 4, 0, 0, 0, 1, 6, 4, 0, 0, 0, 0, 1, 6, 8, 0, 0, 0, 0, 0, 1, 8, 12, 0, 0, 0, 0, 0, 0, 1, 8, 16, 8, 0, 0, 0, 0, 0, 0, 1, 10, 20, 8, 0, 0, 0, 0, 0, 0, 0, 1, 10, 28, 16, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 32, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 40, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Comments

Also the number of compositions of n into exactly k distinct terms whose negation is unimodal. - Gus Wiseman, Mar 06 2020

Examples

			Rows start: 1; 1,0; 1,2,0; 1,2,0,0; 1,4,0,0,0; 1,4,4,0,0,0; 1,6,4,0,0,0,0; 1,6,8,0,0,0,0,0; etc. T(6,3)=4 since 6 can be written as 1+2+3, 1+3+2, 2+3+1, or 3+2+1 but not 2+1+3 or 3+1+2.
From _Gus Wiseman_, Mar 06 2020: (Start)
Triangle begins:
  1
  1  0
  1  2  0
  1  2  0  0
  1  4  0  0  0
  1  4  4  0  0  0
  1  6  4  0  0  0  0
  1  6  8  0  0  0  0  0
  1  8 12  0  0  0  0  0  0
  1  8 16  8  0  0  0  0  0  0
  1 10 20  8  0  0  0  0  0  0  0
  1 10 28 16  0  0  0  0  0  0  0  0
  1 12 32 24  0  0  0  0  0  0  0  0  0
  1 12 40 40  0  0  0  0  0  0  0  0  0  0
  1 14 48 48 16  0  0  0  0  0  0  0  0  0  0
(End)
		

Crossrefs

Cf. A060016, A072574, A072704. Row sums are A072706.
Column k = 2 is A052928.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Strict compositions are A032020.
Non-unimodal strict compositions are A072707.
Unimodal compositions covering an initial interval are A227038.
Numbers whose prime signature is not unimodal are A332282.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
          expand(b(n, i-1) +`if`(i>n, 0, x*b(n-i, i-1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)*ceil(2^(i-1)), i=1..n))(b(n$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i > n, 0, x*b[n-i, i-1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i]* Ceiling[2^(i-1)], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],UnsameQ@@#&&unimodQ[#]&]],{n,12},{k,n}] (* Gus Wiseman, Mar 06 2020 *)

Formula

T(n,k) = 2^(k-1)*A060016(n,k) = T(n-k,k)+2*T(n-k,k-1) [starting with T(0,0)=0, T(0,1)=0 and T(n,1)=1 for n>0].

A332832 Heinz numbers of integer partitions whose negated first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

12, 20, 24, 28, 36, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 165, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 195, 196, 198
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

First differs from A065201 in having 165.
First differs from A316597 in having 36.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
   76: {1,1,8}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   88: {1,1,1,5}
   90: {1,2,2,3}
For example, 60 is the Heinz number of (3,2,1,1), with negated 0-appended first-differences (1,1,0,1), which are not unimodal, so 60 is in the sequence.
		

Crossrefs

The non-negated version is A332287.
The version for of run-lengths (instead of differences) is A332642.
The enumeration of these partitions by sum is A332744.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[100],!unimodQ[Differences[Prepend[primeMS[#],0]]]&]

A335374 Numbers k such that the k-th composition in standard order (A066099) is not co-unimodal.

Original entry on oeis.org

13, 25, 27, 29, 41, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2020

Keywords

Comments

A sequence of integers is co-unimodal if it is the concatenation of a weakly decreasing and a weakly increasing sequence, implying that its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  41: (2,3,1)
  45: (2,1,2,1)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  81: (2,4,1)
  82: (2,3,2)
  83: (2,3,1,1)
  89: (2,1,3,1)
		

Crossrefs

This is the dual version of A335373.
The case that is not unimodal either is A335375.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[-stc[#]]&]

A332725 Heinz numbers of integer partitions whose negated first differences are not unimodal.

Original entry on oeis.org

90, 126, 180, 198, 234, 252, 270, 306, 342, 350, 360, 378, 396, 414, 450, 468, 504, 522, 525, 540, 550, 558, 594, 612, 630, 650, 666, 684, 700, 702, 720, 738, 756, 774, 792, 810, 825, 828, 846, 850, 882, 900, 910, 918, 936, 950, 954, 975, 990, 1008, 1026, 1044
Offset: 1

Views

Author

Gus Wiseman, Feb 26 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
    90: {1,2,2,3}
   126: {1,2,2,4}
   180: {1,1,2,2,3}
   198: {1,2,2,5}
   234: {1,2,2,6}
   252: {1,1,2,2,4}
   270: {1,2,2,2,3}
   306: {1,2,2,7}
   342: {1,2,2,8}
   350: {1,3,3,4}
   360: {1,1,1,2,2,3}
   378: {1,2,2,2,4}
   396: {1,1,2,2,5}
   414: {1,2,2,9}
   450: {1,2,2,3,3}
   468: {1,1,2,2,6}
   504: {1,1,1,2,2,4}
   522: {1,2,2,10}
   525: {2,3,3,4}
   540: {1,1,2,2,2,3}
For example, 350 is the Heinz number of (4,3,3,1), with negated first differences (1,0,2), which is not unimodal, so 350 is in the sequence.
		

Crossrefs

The complement is too full.
The enumeration of these partitions by sum is A332284.
The version where the last part is taken to be 0 is A332832.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Heinz numbers of partitions with weakly increasing differences are A325360.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[1000],!unimodQ[Differences[primeMS[#]]]&]

A335375 Numbers k such that the k-th composition in standard order (A066099) is neither unimodal nor co-unimodal.

Original entry on oeis.org

45, 54, 77, 89, 91, 93, 102, 108, 109, 110, 118, 141, 153, 155, 157, 166, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189, 198, 204, 205, 206, 214, 216, 217, 218, 219, 220, 221, 222, 230, 236, 237, 238, 246, 269, 281, 283, 285, 297, 301, 305, 306, 307, 309
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   45: (2,1,2,1)
   54: (1,2,1,2)
   77: (3,1,2,1)
   89: (2,1,3,1)
   91: (2,1,2,1,1)
   93: (2,1,1,2,1)
  102: (1,3,1,2)
  108: (1,2,1,3)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  118: (1,1,2,1,2)
  141: (4,1,2,1)
  153: (3,1,3,1)
  155: (3,1,2,1,1)
  157: (3,1,1,2,1)
  166: (2,3,1,2)
  173: (2,2,1,2,1)
  177: (2,1,4,1)
  178: (2,1,3,2)
  179: (2,1,3,1,1)
		

Crossrefs

Non-unimodal compositions are ranked by A335373.
Non-co-unimodal compositions are ranked by A335374.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[stc[#]]&&!unimodQ[-stc[#]]&]
Previous Showing 11-15 of 15 results.