cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A332279 Number of widely totally normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 12, 22, 29, 62, 119, 208, 368, 650, 1197, 2173, 3895, 7022, 12698, 22940, 41564
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(7) = 22 compositions:
  (1)  (11)  (12)   (112)   (122)    (123)     (1123)
             (21)   (121)   (212)    (132)     (1132)
             (111)  (211)   (221)    (213)     (1213)
                    (1111)  (1121)   (231)     (1231)
                            (1211)   (312)     (1312)
                            (11111)  (321)     (1321)
                                     (1212)    (2113)
                                     (1221)    (2122)
                                     (2112)    (2131)
                                     (2121)    (2212)
                                     (11211)   (2311)
                                     (111111)  (3112)
                                               (3121)
                                               (3211)
                                               (11221)
                                               (12112)
                                               (12121)
                                               (12211)
                                               (21121)
                                               (111211)
                                               (112111)
                                               (1111111)
For example, starting with y = (3,2,1,1,2,2,2,1,2,1,1,1,1) and repeatedly taking run-lengths gives y -> (1,1,2,3,1,1,4) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1). These are all normal and the last is all 1's, so y is counted under a(20).
		

Crossrefs

Normal compositions are A107429.
Constantly recursively normal partitions are A332272.
The case of partitions is A332277.
The case of reversed partitions is (also) A332277.
The narrow version is A332296.
The strong version is A332337.
The co-strong version is (also) A332337.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],recnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332296(n) - 1.

A332274 Number of totally strong compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 22, 33, 56, 93, 162, 264, 454, 765, 1307, 2237, 3849, 6611, 11472, 19831, 34446, 59865, 104293, 181561, 316924
Offset: 0

Views

Author

Gus Wiseman, Feb 11 2020

Keywords

Comments

A sequence is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong sequence.
A composition of n is a finite sequence of positive integers with sum n.
Also the number of totally co-strong compositions of n.

Examples

			The a(1) = 1 through a(5) = 11 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (121)   (41)
                    (211)   (122)
                    (1111)  (131)
                            (212)
                            (311)
                            (2111)
                            (11111)
		

Crossrefs

The case of partitions is A316496.
The co-strong case is A332274 (this sequence).
The case of reversed partitions is A332275.
The alternating version is A332338.

Programs

  • Mathematica
    tni[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],tni[Length/@Split[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tni]],{n,0,15}]
Previous Showing 11-12 of 12 results.