A332369
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = number of quadrilateral cells in the partition for m >= n >= 2.
Original entry on oeis.org
3, 6, 9, 11, 18, 35, 18, 27, 52, 77, 27, 42, 81, 122, 191, 38, 57, 108, 159, 248, 321, 51, 78, 147, 216, 335, 436, 591, 66, 99, 186, 273, 424, 551, 746, 941, 83, 126, 235, 346, 537, 698, 943, 1190, 1503, 102, 153, 284, 415, 642, 829, 1118, 1407, 1776, 2097, 123, 186, 345, 504, 777, 1002, 1349, 1696, 2139, 2528, 3047
Offset: 2
Triangle begins:
3,
6, 9,
11, 18, 35,
18, 27, 52, 77,
27, 42, 81, 122, 191,
38, 57, 108, 159, 248, 321,
51, 78, 147, 216, 335, 436, 591,
66, 99, 186, 273, 424, 551, 746, 941,
83, 126, 235, 346, 537, 698, 943, 1190, 1503,...
A332353
Triangle read by rows: T(m,n) = Sum_{-m= n >= 1.
Original entry on oeis.org
0, 0, 0, 1, 2, 8, 2, 4, 14, 24, 3, 6, 22, 38, 60, 4, 8, 30, 52, 82, 112, 5, 10, 40, 70, 112, 154, 212, 6, 12, 50, 88, 142, 196, 270, 344, 7, 14, 62, 110, 178, 246, 340, 434, 548, 8, 16, 74, 132, 214, 296, 410, 524, 662, 800, 9, 18, 88, 158, 258, 358, 498, 638, 808, 978, 1196
Offset: 1
Triangle begins:
0,
0, 0,
1, 2, 8,
2, 4, 14, 24,
3, 6, 22, 38, 60,
4, 8, 30, 52, 82, 112,
5, 10, 40, 70, 112, 154, 212,
6, 12, 50, 88, 142, 196, 270, 344,
7, 14, 62, 110, 178, 246, 340, 434, 548,
8, 16, 74, 132, 214, 296, 410, 524, 662, 800,
...
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
for m from 1 to 12 do lprint(seq(VR(m,n,2)/2,n=1..m),); od:
-
A332353[m_,n_]:=Sum[If[GCD[i,j]==2,2(m-i)(n-j),0],{i,2,m-1,2},{j,2,n-1,2}]+If[n>2,m*n-2m,0]+If[m>2,m*n-2n,0];Table[A332353[m, n],{m,15},{n, m}] (* Paolo Xausa, Oct 18 2023 *)
A332361
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of vertices in the partition, for m >= n >= 1.
Original entry on oeis.org
3, 4, 6, 5, 9, 14, 6, 13, 22, 36, 7, 18, 31, 52, 76, 8, 24, 43, 74, 110, 160, 9, 31, 56, 97, 144, 210, 276, 10, 39, 72, 126, 188, 275, 363, 478, 11, 48, 89, 157, 235, 345, 456, 601, 756, 12, 58, 109, 193, 290, 427, 565, 745, 938, 1164, 13, 69, 130, 231, 347, 511, 675, 890, 1120, 1390, 1660
Offset: 1
Triangle begins:
3,
4, 6,
5, 9, 14,
6, 13, 22, 36,
7, 18, 31, 52, 76,
8, 24, 43, 74, 110, 160,
9, 31, 56, 97, 144, 210, 276,
10, 39, 72, 126, 188, 275, 363, 478,
11, 48, 89, 157, 235, 345, 456, 601, 756,
12, 58, 109, 193, 290, 427, 565, 745, 938, 1164,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
ct3 := proc(m,n) local i; global VR;
if m=1 or n=1 then max(m,n) else VR(m,n,2)/2+m+n+1; fi; end; # A332354
ct4 := proc(m,n) local i; global VR;
if m=1 or n=1 then 0 else VR(m,n,1)/4-VR(m,n,2)/2-m/2-n/2-1; fi; end; # A332356
ct := (m,n) -> ct3(m,n) + ct4(m,n); # A332357
cte := proc(m,n) local i; global VR;
if m=1 or n=1 then 2*max(m,n)+1 else VR(m,n,1)/2-VR(m,n,2)/4+m+n; fi; end; # A332359
ctv := (m,n) -> cte(m,n) - ct(m,n) + 1; # A332361
for m from 1 to 12 do lprint([seq(ctv(m,n),n=1..m)]); od:
A332363
Triangle read by rows: T(m,n) = number of unstable threshold functions (the function u_{0,1}(m,n) of Alekseyev et al. 2015) for m >= n >= 2.
Original entry on oeis.org
1, 2, 7, 3, 11, 19, 4, 18, 31, 51, 5, 24, 42, 69, 95, 6, 33, 59, 98, 135, 191, 7, 41, 74, 124, 172, 243, 311, 8, 52, 94, 158, 219, 310, 397, 507, 9, 62, 114, 191, 265, 376, 482, 615, 747, 10, 75, 138, 233, 325, 462, 593, 758, 921, 1135
Offset: 2
Triangle begins:
1,
2, 7,
3, 11, 19,
4, 18, 31, 51,
5, 24, 42, 69, 95,
6, 33, 59, 98, 135, 191,
7, 41, 74, 124, 172, 243, 311,
8, 52, 94, 158, 219, 310, 397, 507,
9, 62, 114, 191, 265, 376, 482, 615, 747,
10, 75, 138, 233, 325, 462, 593, 758, 921, 1135,
...
-
VQ := proc(m,n,q) local eps,a,i,j; eps := 10^(-6); a:=0;
for i from ceil(-m+eps) to floor(m-eps) do
for j from ceil(-n+eps) to floor(n-eps) do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
VS := proc(m,n) local a,i,j; a:=0;
for i from 1 to m-1 do for j from 1 to n-1 do
if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; # A331781
u01:=(m,n) -> 2*VQ(m/2,n/2,1)+2-VS(m,n); # This sequence
for m from 2 to 12 do lprint([seq(u01(m,n),n=2..m)]); od:
A332365
Triangle read by rows: T(m,n) = number of threshold functions (the function u_{0,2}(m,n) of Alekseyev et al. 2015) for m >= n >= 2.
Original entry on oeis.org
3, 6, 13, 9, 21, 33, 12, 30, 49, 73, 15, 40, 66, 99, 133, 18, 51, 85, 130, 177, 237, 21, 63, 106, 164, 224, 301, 381, 24, 76, 130, 202, 277, 374, 475, 593, 27, 90, 154, 241, 331, 448, 570, 713, 857, 30, 105, 182, 287, 395, 538, 687, 862, 1039, 1261, 33, 121, 211, 335, 462, 632, 808, 1016, 1226, 1489, 1757
Offset: 2
Triangle begins:
3,
6, 13,
9, 21, 33,
12, 30, 49, 73,
15, 40, 66, 99, 133,
18, 51, 85, 130, 177, 237,
21, 63, 106, 164, 224, 301, 381,
24, 76, 130, 202, 277, 374, 475, 593,
27, 90, 154, 241, 331, 448, 570, 713, 857,
...
-
VQ := proc(m,n,q) local eps,a,i,j; eps := 10^(-6); a:=0;
for i from ceil(-m+eps) to floor(m-eps) do
for j from ceil(-n+eps) to floor(n-eps) do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
VS := proc(m,n) local a,i,j; a:=0;
for i from 1 to m-1 do for j from 1 to n-1 do
if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; # A331781
u02:=(m,n) -> VQ(m,n,2)+2-2*VQ(m/2,n/2,1)+VS(m,n); # This sequence
for m from 2 to 12 do lprint([seq(u02(m,n),n=2..m)]); od:
Comments