A332369
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = number of quadrilateral cells in the partition for m >= n >= 2.
Original entry on oeis.org
3, 6, 9, 11, 18, 35, 18, 27, 52, 77, 27, 42, 81, 122, 191, 38, 57, 108, 159, 248, 321, 51, 78, 147, 216, 335, 436, 591, 66, 99, 186, 273, 424, 551, 746, 941, 83, 126, 235, 346, 537, 698, 943, 1190, 1503, 102, 153, 284, 415, 642, 829, 1118, 1407, 1776, 2097, 123, 186, 345, 504, 777, 1002, 1349, 1696, 2139, 2528, 3047
Offset: 2
Triangle begins:
3,
6, 9,
11, 18, 35,
18, 27, 52, 77,
27, 42, 81, 122, 191,
38, 57, 108, 159, 248, 321,
51, 78, 147, 216, 335, 436, 591,
66, 99, 186, 273, 424, 551, 746, 941,
83, 126, 235, 346, 537, 698, 943, 1190, 1503,...
A332353
Triangle read by rows: T(m,n) = Sum_{-m= n >= 1.
Original entry on oeis.org
0, 0, 0, 1, 2, 8, 2, 4, 14, 24, 3, 6, 22, 38, 60, 4, 8, 30, 52, 82, 112, 5, 10, 40, 70, 112, 154, 212, 6, 12, 50, 88, 142, 196, 270, 344, 7, 14, 62, 110, 178, 246, 340, 434, 548, 8, 16, 74, 132, 214, 296, 410, 524, 662, 800, 9, 18, 88, 158, 258, 358, 498, 638, 808, 978, 1196
Offset: 1
Triangle begins:
0,
0, 0,
1, 2, 8,
2, 4, 14, 24,
3, 6, 22, 38, 60,
4, 8, 30, 52, 82, 112,
5, 10, 40, 70, 112, 154, 212,
6, 12, 50, 88, 142, 196, 270, 344,
7, 14, 62, 110, 178, 246, 340, 434, 548,
8, 16, 74, 132, 214, 296, 410, 524, 662, 800,
...
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
for m from 1 to 12 do lprint(seq(VR(m,n,2)/2,n=1..m),); od:
-
A332353[m_,n_]:=Sum[If[GCD[i,j]==2,2(m-i)(n-j),0],{i,2,m-1,2},{j,2,n-1,2}]+If[n>2,m*n-2m,0]+If[m>2,m*n-2n,0];Table[A332353[m, n],{m,15},{n, m}] (* Paolo Xausa, Oct 18 2023 *)
A332363
Triangle read by rows: T(m,n) = number of unstable threshold functions (the function u_{0,1}(m,n) of Alekseyev et al. 2015) for m >= n >= 2.
Original entry on oeis.org
1, 2, 7, 3, 11, 19, 4, 18, 31, 51, 5, 24, 42, 69, 95, 6, 33, 59, 98, 135, 191, 7, 41, 74, 124, 172, 243, 311, 8, 52, 94, 158, 219, 310, 397, 507, 9, 62, 114, 191, 265, 376, 482, 615, 747, 10, 75, 138, 233, 325, 462, 593, 758, 921, 1135
Offset: 2
Triangle begins:
1,
2, 7,
3, 11, 19,
4, 18, 31, 51,
5, 24, 42, 69, 95,
6, 33, 59, 98, 135, 191,
7, 41, 74, 124, 172, 243, 311,
8, 52, 94, 158, 219, 310, 397, 507,
9, 62, 114, 191, 265, 376, 482, 615, 747,
10, 75, 138, 233, 325, 462, 593, 758, 921, 1135,
...
-
VQ := proc(m,n,q) local eps,a,i,j; eps := 10^(-6); a:=0;
for i from ceil(-m+eps) to floor(m-eps) do
for j from ceil(-n+eps) to floor(n-eps) do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
VS := proc(m,n) local a,i,j; a:=0;
for i from 1 to m-1 do for j from 1 to n-1 do
if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; # A331781
u01:=(m,n) -> 2*VQ(m/2,n/2,1)+2-VS(m,n); # This sequence
for m from 2 to 12 do lprint([seq(u01(m,n),n=2..m)]); od:
A332365
Triangle read by rows: T(m,n) = number of threshold functions (the function u_{0,2}(m,n) of Alekseyev et al. 2015) for m >= n >= 2.
Original entry on oeis.org
3, 6, 13, 9, 21, 33, 12, 30, 49, 73, 15, 40, 66, 99, 133, 18, 51, 85, 130, 177, 237, 21, 63, 106, 164, 224, 301, 381, 24, 76, 130, 202, 277, 374, 475, 593, 27, 90, 154, 241, 331, 448, 570, 713, 857, 30, 105, 182, 287, 395, 538, 687, 862, 1039, 1261, 33, 121, 211, 335, 462, 632, 808, 1016, 1226, 1489, 1757
Offset: 2
Triangle begins:
3,
6, 13,
9, 21, 33,
12, 30, 49, 73,
15, 40, 66, 99, 133,
18, 51, 85, 130, 177, 237,
21, 63, 106, 164, 224, 301, 381,
24, 76, 130, 202, 277, 374, 475, 593,
27, 90, 154, 241, 331, 448, 570, 713, 857,
...
-
VQ := proc(m,n,q) local eps,a,i,j; eps := 10^(-6); a:=0;
for i from ceil(-m+eps) to floor(m-eps) do
for j from ceil(-n+eps) to floor(n-eps) do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
VS := proc(m,n) local a,i,j; a:=0;
for i from 1 to m-1 do for j from 1 to n-1 do
if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; # A331781
u02:=(m,n) -> VQ(m,n,2)+2-2*VQ(m/2,n/2,1)+VS(m,n); # This sequence
for m from 2 to 12 do lprint([seq(u02(m,n),n=2..m)]); od:
Comments