cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A352275 a(0) = 1 and a(n) = Sum_{k = 0..2*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.

Original entry on oeis.org

1, 4, 64, 1429, 35072, 898129, 23571781, 628750217, 16965558016, 461752375705, 12652302369439, 348552604899778, 9644571491252069, 267852878928912034, 7462156684641697991, 208446714456132946429, 5836259481820028112640, 163741162073796817779389, 4602160147618819467316159
Offset: 0

Views

Author

Peter Bala, Mar 10 2022

Keywords

Comments

The following identity can be easily verified using Maple's SumTools:-Summation procedure: for n >= 1, A005809(n) = binomial(3*n,n) = Sum_{k = 0..2*n} n/(n + k)*binomial(n + k,k).
The binomial coefficients A005809(n) are known to satisfy the supercongruences A005809(n*p^r) == A005809(n*p^(r-1)) (mod p^(3*r)) for primes p >= 5 and positive integers n and r (see Meštrović, equation 39). Calculation suggests that the present sequence satisfies the same congruences.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r.
More generally, for m a positive integer, define a sequence u_m by setting u_m(n) = Sum_{k = 0..m*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Then we conjecture that each sequence u_m satisfies the above supercongruences. This is the case m = 2. See A333093 (case m = 1) and A352276 case (m = 3).

Examples

			Examples of supercongruences:
a(3*5) - a(3) = 208446714456132946429 - 1429 = (2^3)*3*(5^4)*13*41* 26072134391011 == 0 (mod 5^4)
a(17) - a(1) = 163741162073796817779389 - 4 = 5*(17^3)*1506943* 4423278397003 == 0 (mod 17^3)
		

Crossrefs

Programs

  • Maple
    seq(add(n/(n + 2*k)*binomial(n + 2*k,k), k = 0..2*n), n = 1..25);
  • Mathematica
    nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,2n}],{n,nterms-1}]] (* Paolo Xausa, Apr 11 2022 *)
  • PARI
    a(n) = if (n==0, 1, sum(k=0, 2*n, binomial(n + 2*k,k)*n/(n+2*k))); \\ Michel Marcus, Mar 17 2022

Formula

a(n) ~ 5^(5*n + 3/2) / (19 * sqrt(Pi*n) * 2^(2*n + 1) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022

A352276 a(0) = 1 and a(n) = Sum_{k = 0..3*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.

Original entry on oeis.org

1, 9, 625, 58785, 5986993, 633580634, 68611922731, 7545931449401, 839183314181297, 94112350842056469, 10623982584664109750, 1205644823097085684641, 137414820511792364274091, 15718880489100999321142976, 1803621273322664188151352631, 207499462144488863314062180035
Offset: 0

Views

Author

Peter Bala, Mar 10 2022

Keywords

Comments

The following identity can be easily verified using Maple's SumTools:-Summation procedure: for n >= 1, A005810(n) = binomial(4*n,n) = Sum_{k = 0..3*n} n/(n + k)*binomial(n + k,k).
The binomial coefficients A005810(n) are known to satisfy the supercongruences A005810(n*p^r) == A005810(n*p^(r-1)) (mod p^(3*r)) for primes p >= 5 and positive integers n and r (see Meštrović, equation 39).
Calculation suggests that the present sequence satisfies the same congruences.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r.
More generally, for m a positive integer, define a sequence u_m by setting u_m(n) = Sum_{k = 0..m*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Then we conjecture that each sequence u_m satisfies the above supercongruences. This is the case m = 3. See A333093 (case m = 1) and A352275 (m = 2).

Examples

			Examples of supercongruences:
a(11) - a(1) = 1205644823097085684641 - 9 = (2^3)*3*(11^3)*43*2887*5059* 60096637 == 0 (mod 11^3)
a(3*5) - a(3) = 207499462144488863314062180035 - 58785 = 2*(5^4)*1801* 4959701*18583938263214197 == 0 (mod 5^4)
		

Crossrefs

Programs

  • Mathematica
    nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,3n}],{n,nterms-1}]] (* Paolo Xausa, Apr 10 2022 *)

Formula

a(n) ~ 7^(7*n + 3/2) / (37 * sqrt(Pi*n) * 2^(8*n + 3/2) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022

A333472 a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0

Views

Author

Peter Bala, Mar 23 2020

Keywords

Comments

Let F(x) = 1 + f(1)*x + f(2)*x^2 + ... be a power series with integer coefficients. The associated sequence u(n) := [x^n] F(x)^n is known to satisfy the Gauss congruences: u(n*p^k) == u(n*p^(k-1)) ( mod p^k ) for any prime p and positive integers n and k. For certain power series F(x), stronger congruences may hold. Examples include F(x) = (1 + x)^2, F(x) = 1/(1 - x) and F(x) = c(x), where c(x) is the o.g.f. of the Catalan numbers A000108. The associated sequences (with some differences of offset) are A000984, A001700 and A025174, respectively.
Here we take F(x) = c(x/(1 + x)) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + ... (cf. A001006 and A086246) and conjecture that the associated sequence a(n) = [x^n] ( c(x/(1 + x)) )^n satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for prime p >= 5 and positive integers n and k. Cf. A333473.
More generally, we conjecture that for any positive integer r and any integer s the sequence a(r,s;n) := [x^(r*n)] ( c(x/(1 + x)) )^(s*n) also satisfies the above congruences.
Note that the sequence b(n) := [x^n] c(x)^n = A025174(n) satisfies the stronger congruences b(n*p^k) == b(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. The sequence d(n) := [x^n] ( (1 + x)*c(x/(1 + x)) )^n = A333093(n) appears to satisfy the same congruences.

Examples

			Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
		

Crossrefs

Programs

  • Maple
    Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
    G := x -> Cat(x/(1+x)):
    H := (x,n) -> series(G(x)^n, x, 51):
    seq(coeff(H(x, n), x, n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)

Formula

a(n) = [x^n] ( (1 + x - sqrt(1 - 2*x - 3*x^2)) / (2*x) )^n.
a(n) ~ sqrt(((9386 + 1026*sqrt(57))^(1/3) + (9386 - 1026*sqrt(57))^(1/3) - 19)/228) * (((1261 + 57*sqrt(57))^(1/3) + (1261 - 57*sqrt(57))^(1/3) + 10)/6)^n / sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2020
Previous Showing 11-13 of 13 results.