A352275
a(0) = 1 and a(n) = Sum_{k = 0..2*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Original entry on oeis.org
1, 4, 64, 1429, 35072, 898129, 23571781, 628750217, 16965558016, 461752375705, 12652302369439, 348552604899778, 9644571491252069, 267852878928912034, 7462156684641697991, 208446714456132946429, 5836259481820028112640, 163741162073796817779389, 4602160147618819467316159
Offset: 0
Examples of supercongruences:
a(3*5) - a(3) = 208446714456132946429 - 1429 = (2^3)*3*(5^4)*13*41* 26072134391011 == 0 (mod 5^4)
a(17) - a(1) = 163741162073796817779389 - 4 = 5*(17^3)*1506943* 4423278397003 == 0 (mod 17^3)
-
seq(add(n/(n + 2*k)*binomial(n + 2*k,k), k = 0..2*n), n = 1..25);
-
nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,2n}],{n,nterms-1}]] (* Paolo Xausa, Apr 11 2022 *)
-
a(n) = if (n==0, 1, sum(k=0, 2*n, binomial(n + 2*k,k)*n/(n+2*k))); \\ Michel Marcus, Mar 17 2022
A352276
a(0) = 1 and a(n) = Sum_{k = 0..3*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Original entry on oeis.org
1, 9, 625, 58785, 5986993, 633580634, 68611922731, 7545931449401, 839183314181297, 94112350842056469, 10623982584664109750, 1205644823097085684641, 137414820511792364274091, 15718880489100999321142976, 1803621273322664188151352631, 207499462144488863314062180035
Offset: 0
Examples of supercongruences:
a(11) - a(1) = 1205644823097085684641 - 9 = (2^3)*3*(11^3)*43*2887*5059* 60096637 == 0 (mod 11^3)
a(3*5) - a(3) = 207499462144488863314062180035 - 58785 = 2*(5^4)*1801* 4959701*18583938263214197 == 0 (mod 5^4)
-
nterms=25;Join[{1},Table[Sum[n/(n+2k)Binomial[n+2k,k],{k,0,3n}],{n,nterms-1}]] (* Paolo Xausa, Apr 10 2022 *)
A333472
a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0
Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
-
Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
G := x -> Cat(x/(1+x)):
H := (x,n) -> series(G(x)^n, x, 51):
seq(coeff(H(x, n), x, n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)
Comments