cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A334967 Numbers k such that the every subsequence (not necessarily contiguous) of the k-th composition in standard order (A066099) has a different sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 31, 32, 33, 34, 35, 36, 40, 42, 48, 56, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 80, 81, 84, 85, 88, 96, 98, 100, 104, 106, 112, 120, 127, 128, 129, 130, 131, 132, 133, 134
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

First differs from A333223 in lacking 41.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   0: ()           18: (3,2)          48: (1,5)
   1: (1)          19: (3,1,1)        56: (1,1,4)
   2: (2)          20: (2,3)          63: (1,1,1,1,1,1)
   3: (1,1)        21: (2,2,1)        64: (7)
   4: (3)          24: (1,4)          65: (6,1)
   5: (2,1)        26: (1,2,2)        66: (5,2)
   6: (1,2)        28: (1,1,3)        67: (5,1,1)
   7: (1,1,1)      31: (1,1,1,1,1)    68: (4,3)
   8: (4)          32: (6)            69: (4,2,1)
   9: (3,1)        33: (5,1)          70: (4,1,2)
  10: (2,2)        34: (4,2)          71: (4,1,1,1)
  12: (1,3)        35: (4,1,1)        72: (3,4)
  15: (1,1,1,1)    36: (3,3)          73: (3,3,1)
  16: (5)          40: (2,4)          74: (3,2,2)
  17: (4,1)        42: (2,2,2)        80: (2,5)
		

Crossrefs

These compositions are counted by A334268.
Golomb rulers are counted by A169942 and ranked by A333222.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and ranked by A299702
Knapsack compositions are counted by A325676 and ranked by A333223.
The case of partitions is counted by A325769 and ranked by A325778.
Contiguous subsequence-sums are counted by A333224 and ranked by A333257.
Number of (not necessarily contiguous) subsequences is A334299.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Union[Subsets[stc[#]]]&]

A335468 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,2).

Original entry on oeis.org

22, 45, 46, 54, 76, 86, 90, 91, 93, 94, 109, 110, 118, 148, 150, 153, 156, 166, 173, 174, 178, 180, 181, 182, 183, 186, 187, 189, 190, 204, 214, 218, 219, 221, 222, 237, 238, 246, 278, 280, 297, 300, 301, 302, 306, 307, 308, 310, 313, 316, 326, 332, 333, 334
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence together with the corresponding compositions begins:
   22: (2,1,2)
   45: (2,1,2,1)
   46: (2,1,1,2)
   54: (1,2,1,2)
   76: (3,1,3)
   86: (2,2,1,2)
   90: (2,1,2,2)
   91: (2,1,2,1,1)
   93: (2,1,1,2,1)
   94: (2,1,1,1,2)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  118: (1,1,2,1,2)
  148: (3,2,3)
  150: (3,2,1,2)
		

Crossrefs

The complement A335469 is the avoiding version.
The (1,2,1)-matching version is A335466.
These compositions are counted by A335472.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134 and ranked by A334030.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,x_,_}/;x>y]&];

A335481 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,1,3).

Original entry on oeis.org

44, 88, 89, 92, 108, 152, 172, 176, 177, 178, 179, 180, 184, 185, 188, 216, 217, 220, 236, 296, 300, 304, 305, 312, 332, 344, 345, 348, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 364, 368, 369, 370, 371, 372, 376, 377, 380, 408, 428, 432, 433, 434, 435
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   44: (2,1,3)
   88: (2,1,4)
   89: (2,1,3,1)
   92: (2,1,1,3)
  108: (1,2,1,3)
  152: (3,1,4)
  172: (2,2,1,3)
  176: (2,1,5)
  177: (2,1,4,1)
  178: (2,1,3,2)
  179: (2,1,3,1,1)
  180: (2,1,2,3)
  184: (2,1,1,4)
  185: (2,1,1,3,1)
  188: (2,1,1,1,3)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;y
    				

A335484 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (3,2,1).

Original entry on oeis.org

37, 69, 75, 77, 101, 133, 137, 139, 141, 149, 150, 151, 155, 157, 165, 197, 203, 205, 229, 261, 265, 267, 269, 274, 275, 277, 278, 279, 281, 283, 285, 293, 297, 299, 300, 301, 302, 303, 309, 310, 311, 315, 317, 325, 331, 333, 357, 389, 393, 395, 397, 405, 406
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   37: (3,2,1)
   69: (4,2,1)
   75: (3,2,1,1)
   77: (3,1,2,1)
  101: (1,3,2,1)
  133: (5,2,1)
  137: (4,3,1)
  139: (4,2,1,1)
  141: (4,1,2,1)
  149: (3,2,2,1)
  150: (3,2,1,2)
  151: (3,2,1,1,1)
  155: (3,1,2,1,1)
  157: (3,1,1,2,1)
  165: (2,3,2,1)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;z
    				

A335524 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (2,2,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335477 is the matching version.
The (1,2,2)-avoiding version is A335525.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x>y]&]

A335525 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,2,2).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335450.
These compositions are counted by A335473 (by sum).
The complement A335475 is the matching version.
The (2,2,1)-avoiding version is A335524.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				

A335550 Number of minimal normal patterns avoided by the prime indices of n in increasing or decreasing order, counting multiplicity.

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(12) = 4 minimal patterns avoiding (1,1,2) are: (2,1), (1,1,1), (1,2,2), (1,2,3).
The a(30) = 3 minimal patterns avoiding (1,2,3) are: (1,1), (2,1), (1,2,3,4).
		

Crossrefs

The version for standard compositions is A335465.
Patterns are counted by A000670.
Sum of prime indices is A056239.
Each number's prime indices are given in the rows of A112798.
Patterns are ranked by A333217.
Patterns matched by compositions are counted by A335456.
Patterns matched by prime indices are counted by A335549.
Patterns matched by partitions are counted by A335837.

Formula

It appears that for n > 1, a(n) = 3 if n is a power of a squarefree number (A072774), and a(n) = 4 otherwise.

A335488 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1).

Original entry on oeis.org

3, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than once, or non-strict compositions.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
		

Crossrefs

The complement A233564 is the avoiding version.
Patterns matching this pattern are counted by A019472 (by length).
Permutations of prime indices matching this pattern are counted by A335487.
These compositions are counted by A261982 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1,1)-matching case is A335512.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_}]&]

A334300 Number of distinct nonempty subsequences (not necessarily contiguous) in the n-th composition in standard order (A066099).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 5, 3, 6, 5, 4, 1, 3, 3, 5, 3, 5, 6, 7, 3, 6, 5, 9, 5, 9, 7, 5, 1, 3, 3, 5, 2, 7, 7, 7, 3, 7, 3, 8, 7, 11, 10, 9, 3, 6, 7, 9, 7, 10, 11, 12, 5, 9, 8, 13, 7, 12, 9, 6, 1, 3, 3, 5, 3, 7, 7, 7, 3, 5, 5, 11, 6, 13, 11, 9, 3, 7, 6
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2020

Keywords

Comments

Looking only at contiguous subsequences, or restrictions to a subinterval, gives A124770.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
  1
  1 2
  1 3 3 3
  1 3 2 5 3 6 5 4
  1 3 3 5 3 5 6 7 3 6 5 9 5 9 7 5
If the k-th composition in standard order is c, then we say that the STC-number of c is k. The n-th column below lists the STC-numbers of the nonempty subsequences of the composition with STC-number n:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
        1     2  2  3     4   2   5   4   6   6   7
              1  1  1     1       3   1   5   3   3
                                  2       3   2   1
                                  1       2   1
                                          1
		

Crossrefs

Row lengths are A011782.
Looking only at contiguous subsequences gives A124770.
The contiguous case with empty subsequences allowed is A124771.
Allowing empty subsequences gives A334299.
Compositions where every subinterval has a different sum are A333222.
Knapsack compositions are A333223.
Contiguous positive subsequence-sums are counted by A333224.
Contiguous subsequence-sums are counted by A333257.
Subsequence-sums are counted by A334968.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Rest[Subsets[stc[n]]]]],{n,0,100}]
  • Python
    from itertools import combinations
    def comp(n):
        # see A357625
        return
    def A334300(n):
        A,C = set(),comp(n)
        c = range(len(C))
        for j in c:
            for k in combinations(c, j):
                A.add(tuple(C[i] for i in k))
        return len(A) # John Tyler Rascoe, Mar 12 2025

Formula

a(n) = A334299(n) - 1.

A335475 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,2).

Original entry on oeis.org

26, 53, 54, 58, 90, 100, 106, 107, 109, 110, 117, 118, 122, 154, 164, 181, 182, 186, 201, 202, 204, 210, 212, 213, 214, 215, 218, 219, 221, 222, 228, 234, 235, 237, 238, 245, 246, 250, 282, 309, 310, 314, 329, 332, 346, 356, 362, 363, 365, 366, 373, 374, 378
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   26: (1,2,2)
   53: (1,2,2,1)
   54: (1,2,1,2)
   58: (1,1,2,2)
   90: (2,1,2,2)
  100: (1,3,3)
  106: (1,2,2,2)
  107: (1,2,2,1,1)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  117: (1,1,2,2,1)
  118: (1,1,2,1,2)
  122: (1,1,1,2,2)
  154: (3,1,2,2)
  164: (2,3,3)
		

Crossrefs

The complement A335525 is the avoiding version.
The (2,2,1)-matching version is A335477.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335453.
These compositions are counted by A335472 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				
Previous Showing 21-30 of 38 results. Next