cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 250 results. Next

A374740 Irregular triangle read by rows where row n lists the leaders of weakly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 2, 1, 4, 3, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 5, 1, 4, 1, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 4
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2024

Keywords

Comments

The leaders of weakly decreasing runs in a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so row 1234567 is (3,2,2,5).
The nonnegative integers, corresponding compositions, and leaders of weakly decreasing runs begin:
    0: () -> ()           15: (1,1,1,1) -> (1)
    1: (1) -> (1)         16: (5) -> (5)
    2: (2) -> (2)         17: (4,1) -> (4)
    3: (1,1) -> (1)       18: (3,2) -> (3)
    4: (3) -> (3)         19: (3,1,1) -> (3)
    5: (2,1) -> (2)       20: (2,3) -> (2,3)
    6: (1,2) -> (1,2)     21: (2,2,1) -> (2)
    7: (1,1,1) -> (1)     22: (2,1,2) -> (2,2)
    8: (4) -> (4)         23: (2,1,1,1) -> (2)
    9: (3,1) -> (3)       24: (1,4) -> (1,4)
   10: (2,2) -> (2)       25: (1,3,1) -> (1,3)
   11: (2,1,1) -> (2)     26: (1,2,2) -> (1,2)
   12: (1,3) -> (1,3)     27: (1,2,1,1) -> (1,2)
   13: (1,2,1) -> (1,2)   28: (1,1,3) -> (1,3)
   14: (1,1,2) -> (1,2)   29: (1,1,2,1) -> (1,2)
		

Crossrefs

Row-leaders are A065120.
Row-lengths are A124765.
Other types of runs are A374251, A374515, A374683, A374757.
The opposite is A374629.
Positions of distinct (strict) rows are A374701, counted by A374743.
Row-sums are A374741, opposite A374630.
Positions of identical rows are A374744, counted by A374742.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],GreaterEqual],{n,0,100}]

A344740 Number of integer partitions of n with a permutation that has no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 15, 19, 26, 36, 49, 64, 85, 111, 147, 191, 245, 315, 405, 515, 652, 823, 1036, 1295, 1617, 2011, 2493, 3076, 3788, 4650, 5696, 6952, 8464, 10280, 12461, 15059, 18163, 21858, 26255, 31463, 37642, 44933, 53555, 63704, 75654, 89683, 106163, 125445, 148021
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

These partitions are characterized by either being a twin (x,x) or having a wiggly permutation. A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)    (3)    (4)      (5)      (6)        (7)          (8)
       (1,1)  (2,1)  (2,2)    (3,2)    (3,3)      (4,3)        (4,4)
                     (3,1)    (4,1)    (4,2)      (5,2)        (5,3)
                     (2,1,1)  (2,2,1)  (5,1)      (6,1)        (6,2)
                              (3,1,1)  (3,2,1)    (3,2,2)      (7,1)
                                       (4,1,1)    (3,3,1)      (3,3,2)
                                       (2,2,1,1)  (4,2,1)      (4,2,2)
                                                  (5,1,1)      (4,3,1)
                                                  (3,2,1,1)    (5,2,1)
                                                  (2,2,1,1,1)  (6,1,1)
                                                               (3,2,2,1)
                                                               (3,3,1,1)
                                                               (4,2,1,1)
                                                               (2,2,2,1,1)
                                                               (3,2,1,1,1)
For example, the partition (3,2,2,1) has the two wiggly permutations (2,3,1,2) and (2,1,3,2), so is counted under a(8).
		

Crossrefs

The complement is counted by A344654.
The Heinz numbers of these partitions are A344742, complement A344653.
The normal case starts 1, 1, 1, then becomes A345163, complement A345162.
Not counting twins (x,x) gives A345170, ranked by A345172.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A344605 counts wiggly patterns with twins.
A344606 counts wiggly permutations of prime indices with twins.
A344614 counts compositions with no consecutive strictly monotone triple.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]],{n,0,15}]

Formula

a(n) = A345170(n) for n odd; a(n) = A345170(n) + 1 for n even.

Extensions

a(26)-a(32) from Robert Price, Jun 22 2021
a(33) onwards from Joseph Likar, Sep 05 2023

A353851 Number of integer compositions of n with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 8, 2, 12, 5, 8, 2, 34, 2, 8, 8, 43, 2, 52, 2, 70, 8, 8, 2, 282, 5, 8, 18, 214, 2, 386, 2, 520, 8, 8, 8, 1957, 2, 8, 8, 2010, 2, 2978, 2, 3094, 94, 8, 2, 16764, 5, 340, 8, 12310, 2, 26514, 8, 27642, 8, 8, 2, 132938, 2, 8, 238, 107411, 8, 236258
Offset: 0

Views

Author

Gus Wiseman, May 31 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 1 through a(8) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                        (112)            (222)                (224)
                        (211)            (1113)               (422)
                        (1111)           (2112)               (2222)
                                         (3111)               (11114)
                                         (11211)              (41111)
                                         (111111)             (111122)
                                                              (112112)
                                                              (211211)
                                                              (221111)
                                                              (11111111)
For example:
  (1,1,2,1,1) has run-sums (2,2,2) so is counted under a(6).
  (4,1,1,1,1,2,2) has run-sums (4,4,4) so is counted under a(12).
  (3,3,2,2,2) has run-sums (6,6) so is counted under a(12).
		

Crossrefs

The version for parts or runs instead of run-sums is A000005.
The version for multiplicities instead of run-sums is A098504.
All parts are divisors of n, see A100346.
The version for partitions is A304442, ranked by A353833.
The version for run-lengths instead of run-sums is A329738, ptns A047966.
These compositions are ranked by A353848.
The distinct instead of equal version is A353850.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A353847 represents the composition run-sum transformation.
For distinct instead of equal run-sums: A032020, A098859, A242882, A329739, A351013, A353837, ranked by A353838 (complement A353839), A353852, A354580, ranked by A354581.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],SameQ@@Total/@Split[#]&]],{n,0,15}]
  • PARI
    a(n) = {if(n <=1, return(1)); my(d = divisors(n), res = 0); for(i = 1, #d, nd = numdiv(d[i]); res+=(nd*(nd-1)^(n/d[i]-1)) ); res } \\ David A. Corneth, Jun 02 2022

Formula

From David A. Corneth, Jun 02 2022 (Start)
a(p) = 2 for prime p.
a(p*q) = 8 for distinct primes p and q (Cf. A006881).
a(n) = Sum_{d|n} tau(d)*(tau(d)-1) ^ (n/d - 1) where tau = A000005. (End)

Extensions

More terms from David A. Corneth, Jun 02 2022

A373951 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 2, 1, 1, 0, 7, 4, 4, 0, 1, 0, 14, 5, 6, 5, 1, 1, 0, 23, 14, 10, 10, 6, 0, 1, 0, 39, 26, 29, 12, 14, 6, 1, 1, 0, 71, 46, 54, 40, 19, 16, 9, 0, 1, 0, 124, 92, 96, 82, 64, 22, 22, 8, 1, 1, 0, 214, 176, 204, 144, 137, 82, 30, 26, 10, 0, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 28 2024

Keywords

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    3   0   1   0
    4   2   1   1   0
    7   4   4   0   1   0
   14   5   6   5   1   1   0
   23  14  10  10   6   0   1   0
   39  26  29  12  14   6   1   1   0
   71  46  54  40  19  16   9   0   1   0
  124  92  96  82  64  22  22   8   1   1   0
Row n = 6 counts the following compositions:
  (6)     (411)   (3111)   (33)     (222)  (111111)  .
  (51)    (114)   (1113)   (2211)
  (15)    (1311)  (1221)   (1122)
  (42)    (1131)  (12111)  (21111)
  (24)    (2112)  (11211)  (11112)
  (141)           (11121)
  (321)
  (312)
  (231)
  (213)
  (132)
  (123)
  (2121)
  (1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2).
		

Crossrefs

Column k = 0 is A003242 (anti-runs or compressed compositions).
Row-sums are A011782.
Same as A373949 with rows reversed.
Column k = 1 is A373950.
This statistic is represented by A373954, difference A373953.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]],{n,0,10},{k,0,n}]

A374251 Irregular triangle read by rows where row n is the run-compression of the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 5, 4, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 2, 3, 1, 2, 4, 2, 3, 1, 2, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The standard compositions and their run-compressions begin:
   0: ()        --> ()
   1: (1)       --> (1)
   2: (2)       --> (2)
   3: (1,1)     --> (1)
   4: (3)       --> (3)
   5: (2,1)     --> (2,1)
   6: (1,2)     --> (1,2)
   7: (1,1,1)   --> (1)
   8: (4)       --> (4)
   9: (3,1)     --> (3,1)
  10: (2,2)     --> (2)
  11: (2,1,1)   --> (2,1)
  12: (1,3)     --> (1,3)
  13: (1,2,1)   --> (1,2,1)
  14: (1,1,2)   --> (1,2)
  15: (1,1,1,1) --> (1)
		

Crossrefs

Last column is A001511.
First column is A065120.
Row-lengths are A124767.
Using prime indices we get A304038, row-sums A066328.
Row n has A334028(n) distinct elements.
Rows are ranked by A373948 (standard order).
Row-sums are A373953.
A003242 counts run-compressed compositions, i.e., anti-runs, ranks A333489.
A007947 (squarefree kernel) represents run-compression of multisets.
A037201 run-compresses first differences of primes, halved A373947.
A066099 lists the parts of compositions in standard order.
A116861 counts partitions by sum of run-compression.
A238279 and A333755 count compositions by number of runs.
A373949 counts compositions by sum of run-compression, opposite A373951.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n]],{n,100}]

A374515 Irregular triangle read by rows where row n lists the leaders of anti-runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2024

Keywords

Comments

Anti-runs summing to n are counted by A003242(n).
The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The maximal anti-runs of the 1234567th composition in standard order are ((3,2,1,2),(2,1,2,5,1),(1),(1)), so row 1234567 is (3,2,1,1).
The nonnegative integers, corresponding compositions, and leaders of anti-runs begin:
    0:      () -> ()        15: (1,1,1,1) -> (1,1,1,1)
    1:     (1) -> (1)       16:       (5) -> (5)
    2:     (2) -> (2)       17:     (4,1) -> (4)
    3:   (1,1) -> (1,1)     18:     (3,2) -> (3)
    4:     (3) -> (3)       19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2)       20:     (2,3) -> (2)
    6:   (1,2) -> (1)       21:   (2,2,1) -> (2,2)
    7: (1,1,1) -> (1,1,1)   22:   (2,1,2) -> (2)
    8:     (4) -> (4)       23: (2,1,1,1) -> (2,1,1)
    9:   (3,1) -> (3)       24:     (1,4) -> (1)
   10:   (2,2) -> (2,2)     25:   (1,3,1) -> (1)
   11: (2,1,1) -> (2,1)     26:   (1,2,2) -> (1,2)
   12:   (1,3) -> (1)       27: (1,2,1,1) -> (1,1)
   13: (1,2,1) -> (1)       28:   (1,1,3) -> (1,1)
   14: (1,1,2) -> (1,1)     29: (1,1,2,1) -> (1,1)
		

Crossrefs

Row-leaders of nonempty rows are A065120.
Row-lengths are A333381.
Row-sums are A374516.
Positions of identical rows are A374519 (counted by A374517).
Positions of distinct (strict) rows are A374638 (counted by A374518).
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression is A373948 or A374251, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],UnsameQ],{n,0,100}]

A353849 Number of distinct positive run-sums of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 462903 in standard order is (1,1,4,7,1,2,1,1,1), with run-sums (2,4,7,1,2,3), of which a(462903) = 5 are distinct.
		

Crossrefs

Counting repeated runs also gives A124767.
Positions of first appearances are A246534.
For distinct runs instead of run-sums we have A351014 (firsts A351015).
A version for partitions is A353835, weak A353861.
Positions of 1's are A353848, counted by A353851.
The version for binary expansion is A353929 (firsts A353930).
The run-sums themselves are listed by A353932, with A353849 distinct terms.
For distinct run-lengths instead of run-sums we have A354579.
A005811 counts runs in binary expansion.
A066099 lists compositions in standard order.
A165413 counts distinct run-lengths in binary expansion.
A297770 counts distinct runs in binary expansion, firsts A350952.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Split[stc[n]]]],{n,0,100}]

A353853 Trajectory of the composition run-sum transformation (or condensation) of n, using standard composition numbers.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 5, 6, 7, 4, 8, 9, 10, 8, 11, 10, 8, 12, 13, 14, 10, 8, 15, 8, 16, 17, 18, 19, 18, 20, 21, 17, 22, 23, 20, 24, 25, 26, 24, 27, 26, 24, 28, 20, 29, 21, 17, 30, 18, 31, 16, 32, 33, 34, 35, 34, 36, 32, 37, 38, 39, 36, 32, 40, 41, 42, 32
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 given in row 11 corresponds to the trajectory (2,1,1) -> (2,2) -> (4).

Examples

			Triangle begins:
   0
   1
   2
   3  2
   4
   5
   6
   7  4
   8
   9
  10  8
  11 10  8
  12
  13
  14 10  8
For example, the trajectory of 29 is 29 -> 21 -> 17, corresponding to the compositions (1,1,2,1) -> (2,2,1) -> (4,1).
		

Crossrefs

These sequences for partitions are A353840-A353846.
This is the iteration of A353847, with partition version A353832.
Row-lengths are A353854, counted by A353859.
Final terms are A353855.
Counting rows by weight of final term gives A353856.
Rows ending in a power of 2 are A353857, counted by A353858.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A329739 counts compositions with all distinct run-lengths.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353929 counts distinct runs in binary expansion, firsts A353930.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[NestWhileList[stcinv[Total/@Split[stc[#]]]&,n,MatchQ[stc[#],{_,x_,x_,_}]&],{n,0,50}]

A374518 Number of integer compositions of n whose leaders of anti-runs are distinct.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 32, 58, 112, 201, 371, 694, 1276, 2342, 4330, 7958, 14613, 26866, 49303, 90369, 165646, 303342, 555056, 1015069, 1855230
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 17 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                      (211)  (41)   (51)
                             (122)  (123)
                             (131)  (132)
                             (212)  (141)
                             (311)  (213)
                                    (231)
                                    (312)
                                    (321)
                                    (411)
                                    (1212)
                                    (1221)
                                    (2112)
                                    (2121)
		

Crossrefs

These compositions have ranks A374638.
The complement is counted by A374678.
For partitions instead of compositions we have A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A274174, ranks A374249.
- For leaders of weakly increasing runs we have A374632, ranks A374768.
- For leaders of strictly increasing runs we have A374687, ranks A374698.
- For leaders of weakly decreasing runs we have A374743, ranks A374701.
- For leaders of strictly decreasing runs we have A374761, ranks A374767.
Other types of run-leaders (instead of distinct):
- For identical leaders we have A374517.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A353859 Triangle read by rows where T(n,k) is the number of integer compositions of n with composition run-sum trajectory of length k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 4, 2, 2, 0, 0, 7, 7, 2, 0, 0, 0, 14, 14, 4, 0, 0, 0, 0, 23, 29, 12, 0, 0, 0, 0, 0, 39, 56, 25, 8, 0, 0, 0, 0, 0, 71, 122, 53, 10, 0, 0, 0, 0, 0, 0, 124, 246, 126, 16, 0, 0, 0, 0, 0, 0, 0, 214, 498, 264, 48, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sums transformation (or condensation, represented by A353847) until an anti-run is reached. For example, the trajectory (2,4,2,1,1) -> (2,4,2,2) -> (2,4,4) -> (2,8) is counted under T(10,4).

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   3   1   0
   0   4   2   2   0
   0   7   7   2   0   0
   0  14  14   4   0   0   0
   0  23  29  12   0   0   0   0
   0  39  56  25   8   0   0   0   0
   0  71 122  53  10   0   0   0   0   0
   0 124 246 126  16   0   0   0   0   0   0
   0 214 498 264  48   0   0   0   0   0   0   0
For example, row n = 5 counts the following compositions:
  (5)    (113)    (1121)
  (14)   (122)    (1211)
  (23)   (221)
  (32)   (311)
  (41)   (1112)
  (131)  (2111)
  (212)  (11111)
		

Crossrefs

Column k = 1 is A003242, ranked by A333489, complement A261983.
Row sums are A011782.
Positive row-lengths are A070939.
The version for partitions is A353846, ranked by A353841.
This statistic (trajectory length) is ranked by A353854, firsts A072639.
Counting by length of last part instead of number of parts gives A353856.
A333627 ranks the run-lengths of standard compositions.
A353847 represents the run-sums of a composition, partitions A353832.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    rsc[y_]:=If[y=={},{},NestWhileList[Total/@Split[#]&,y,MatchQ[#,{_,x_,x_,_}]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[rsc[#]]==k&]],{n,0,10},{k,0,n}]
Previous Showing 41-50 of 250 results. Next