cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A336104 Number of permutations of the prime indices of A000225(n) = 2^n - 1 with at least one non-singleton run.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 96, 0, 120, 6, 0, 0, 720, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 322560, 0, 0, 0, 5040, 0, 4320, 0, 0, 0, 0, 0, 362880, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(21) = 6 permutations of {4, 4, 31, 68}:
  (4,4,31,68)
  (4,4,68,31)
  (31,4,4,68)
  (31,68,4,4)
  (68,4,4,31)
  (68,31,4,4)
		

Crossrefs

A335432 is the anti-run version.
A335459 is the version for factorial numbers.
A336105 counts all permutations of this multiset.
A336107 is not restricted to predecessors of powers of 2.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A008480 counts permutations of prime indices.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A333489 ranks anti-run compositions.
A335433 lists numbers whose prime indices have an anti-run permutation.
A335448 lists numbers whose prime indices have no anti-run permutation.
A335452 counts anti-run permutations of prime indices.
A335489 counts strict permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[2^n-1]],MatchQ[#,{_,x_,x_,_}]&]],{n,30}]

Formula

a(n) = A336107(2^n - 1).
a(n) = A336105(n) - A335432(n).

A350353 Numbers whose multiset of prime factors has a permutation that is not weakly alternating.

Original entry on oeis.org

30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin:
   30 : (1,2,3)       100 : (1,3,3,1)
   36 : (1,2,2,1)     102 : (1,2,7)
   42 : (1,2,4)       105 : (2,3,4)
   60 : (1,1,2,3)     108 : (1,2,2,1,2)
   66 : (1,2,5)       110 : (1,3,5)
   70 : (1,3,4)       114 : (1,2,8)
   72 : (1,1,2,2,1)   120 : (1,1,1,2,3)
   78 : (1,2,6)       126 : (1,2,4,2)
   84 : (1,1,2,4)     130 : (1,3,6)
   90 : (1,2,3,2)     132 : (1,1,2,5)
		

Crossrefs

The strong version is A289553, complement A167171.
These are the positions of nonzero terms in A349797.
Below, WA = "weakly alternating":
- WA compositions are counted by A349052/A129852/A129853.
- Non-WA compositions are counted by A349053, ranked by A349057.
- WA permutations of prime factors = A349056, complement A349797.
- WA patterns are counted by A349058, complement A350138.
- WA ordered factorizations are counted by A349059, complement A350139.
- WA partitions are counted by A349060, complement A349061.
A001250 counts alternating permutations, complement A348615.
A008480 counts permutations of prime factors.
A025047 = alternating compositions, ranked by A345167, complement A345192.
A056239 adds up prime indices, row sums of A112798 (row lengths A001222).
A071321 gives the alternating sum of prime factors, reverse A071322.
A335452 counts anti-run permutations of prime factors, complement A336107.
A345164 = alternating permutations of prime factors, complement A350251.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Previous Showing 11-12 of 12 results.