A352360 Three-column array giving list of primitive triples for integer-sided triangles with A < B < C < 2*Pi/3 and such that FA, FB, FC are also integers where F is the Fermat point of the triangle.
399, 455, 511, 511, 616, 665, 1591, 5439, 5624, 35941, 47544, 58015, 8827, 16835, 18928, 36741, 73151, 92680, 16219, 94335, 97976, 1235, 4056, 4459, 12728, 13545, 15523, 14744, 33271, 37539, 13889, 16856, 17501, 1911, 4901, 5681, 196935, 320624, 324079, 9435, 12691, 17501, 22477, 37128, 44135
Offset: 1
Examples
The array begins: 399, 455, 511; 511, 616, 665; 1591, 5439, 5624; 35941, 47544, 58015; 8827, 16835, 18928; 36741, 73151, 92680; ..................... For 1st triple (399, 455, 511) with gcd(399, 455, 511) = 7, we get FA = 325, FB = 264 and FC = 195. This smallest triangle such that a, b, c, FA, FB, FC are all integers is the example proposed in Project Euler's link.
Links
- Project Euler, Problem 143 - Investigating the Torricelli point of a triangle.
Comments