cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A347386 Number of iterations of A347385 (Dedekind psi function applied to the odd part of n) needed to reach a power of 2.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 2, 0, 3, 2, 3, 2, 1, 2, 2, 1, 3, 2, 3, 1, 3, 2, 1, 0, 2, 3, 2, 2, 4, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 2, 3, 3, 2, 4, 3, 3, 1, 3, 3, 3, 2, 2, 1, 2, 0, 2, 2, 4, 3, 2, 2, 3, 2, 5, 4, 3, 3, 2, 2, 3, 2, 4, 2, 2, 1, 4, 3, 3, 2, 4, 3, 2, 2, 1, 2, 3, 1, 3, 2, 3, 3, 4, 3, 3, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Comments

Also, for n > 1, one less than the number of iterations of A347385 to reach 1.

Crossrefs

Cf. A000265, A001615, A209229, A347385, A347387 (the exponent of the eventual power of 2 reached).
Cf. also A003434, A019269, A227944, A256757, A331410, A336361 for similar sequences.

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p + 1)*p^(e - 1)]; psiOdd[1] = 1; psiOdd[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := -1 + Length @ NestWhileList[psiOdd, n, # != 2^IntegerExponent[#, 2] &]; Array[a, 100] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    A347385(n) = if(1==n,n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A347386(n) = if(!bitand(n, n-1), 0, 1+A347386(A347385(n)));

Formula

If A209229(n) = 1, then a(n) = 0, otherwise a(n) = 1 + a(A001615(A000265(n))).
For all n >= 1, a(n) <= A331410(n).

A347375 The position of the first occurrence of n in A347249.

Original entry on oeis.org

1, 15, 25, 75, 275, 725, 2175, 3725, 9025, 27075, 79025, 215905, 390625, 1079525, 2256125, 5397625, 11328125, 33984375, 58203125, 174609375
Offset: 0

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Comments

These appear to also be the positions of records in A347249.
Question: Are all terms after the initial one multiples of five?

Crossrefs

Formula

For all n >= 0, A347249(a(n)) = n.
Previous Showing 11-12 of 12 results.