cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A338557 Products of three distinct prime numbers of even index.

Original entry on oeis.org

273, 399, 609, 741, 777, 903, 1113, 1131, 1281, 1443, 1491, 1653, 1659, 1677, 1729, 1869, 2067, 2109, 2121, 2247, 2373, 2379, 2451, 2639, 2751, 2769, 2919, 3021, 3081, 3171, 3219, 3367, 3423, 3471, 3477, 3633, 3741, 3801, 3857, 3913, 3939, 4047, 4053, 4173
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

All terms are odd.
Also sphenic numbers (A007304) with all even prime indices (A031215).
Also Heinz numbers of strict integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
     273: {2,4,6}     1869: {2,4,24}    3219: {2,10,12}
     399: {2,4,8}     2067: {2,6,16}    3367: {4,6,12}
     609: {2,4,10}    2109: {2,8,12}    3423: {2,4,38}
     741: {2,6,8}     2121: {2,4,26}    3471: {2,6,24}
     777: {2,4,12}    2247: {2,4,28}    3477: {2,8,18}
     903: {2,4,14}    2373: {2,4,30}    3633: {2,4,40}
    1113: {2,4,16}    2379: {2,6,18}    3741: {2,10,14}
    1131: {2,6,10}    2451: {2,8,14}    3801: {2,4,42}
    1281: {2,4,18}    2639: {4,6,10}    3857: {4,8,10}
    1443: {2,6,12}    2751: {2,4,32}    3913: {4,6,14}
    1491: {2,4,20}    2769: {2,6,20}    3939: {2,6,26}
    1653: {2,8,10}    2919: {2,4,34}    4047: {2,8,20}
    1659: {2,4,22}    3021: {2,8,16}    4053: {2,4,44}
    1677: {2,6,14}    3081: {2,6,22}    4173: {2,6,28}
    1729: {4,6,8}     3171: {2,4,36}    4179: {2,4,46}
		

Crossrefs

For the following, NNS means "not necessarily strict".
A007304 allows all prime indices (not just even) (NNS: A014612).
A046389 allows all odd primes (NNS: A046316).
A258117 allows products of any length (NNS: A066207).
A307534 is the version for odds instead of evens (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338556 is the NNS version.
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers, with even case A039956.
A078374 counts 3-part relatively prime strict partitions (NNS: A023023).
A075819 lists even Heinz numbers of strict triples (NNS: A075818).
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).
A258116 lists squarefree numbers with all odd prime indices (NNS: A066208).
A285508 lists Heinz numbers of non-strict triples.

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (omega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from itertools import filterfalse
    from math import isqrt
    from sympy import primepi, primerange, nextprime, integer_nthroot
    def A338557(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1) for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A337459 Numbers k such that the k-th composition in standard order is a unimodal triple.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 25, 26, 28, 35, 37, 41, 42, 49, 50, 52, 56, 67, 69, 73, 74, 81, 82, 84, 97, 98, 100, 104, 112, 131, 133, 137, 138, 145, 146, 161, 162, 164, 168, 193, 194, 196, 200, 208, 224, 259, 261, 265, 266, 273, 274, 289, 290, 292, 321, 322, 324
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      7: (1,1,1)     52: (1,2,3)    133: (5,2,1)
     11: (2,1,1)     56: (1,1,4)    137: (4,3,1)
     13: (1,2,1)     67: (5,1,1)    138: (4,2,2)
     14: (1,1,2)     69: (4,2,1)    145: (3,4,1)
     19: (3,1,1)     73: (3,3,1)    146: (3,3,2)
     21: (2,2,1)     74: (3,2,2)    161: (2,5,1)
     25: (1,3,1)     81: (2,4,1)    162: (2,4,2)
     26: (1,2,2)     82: (2,3,2)    164: (2,3,3)
     28: (1,1,3)     84: (2,2,3)    168: (2,2,4)
     35: (4,1,1)     97: (1,5,1)    193: (1,6,1)
     37: (3,2,1)     98: (1,4,2)    194: (1,5,2)
     41: (2,3,1)    100: (1,3,3)    196: (1,4,3)
     42: (2,2,2)    104: (1,2,4)    200: (1,3,4)
     49: (1,4,1)    112: (1,1,5)    208: (1,2,5)
     50: (1,3,2)    131: (6,1,1)    224: (1,1,6)
		

Crossrefs

A337460 is the non-unimodal version.
A000217(n - 2) counts 3-part compositions.
6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts strict 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A001523 counts unimodal compositions.
A007052 counts unimodal patterns.
A011782 counts unimodal permutations.
A115981 counts non-unimodal compositions.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311, with strict case A337453.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Combinatory separations are counted by A334030.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&!MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Complement of A335373 in A014311.

A337460 Numbers k such that the k-th composition in standard order is a non-unimodal triple.

Original entry on oeis.org

22, 38, 44, 70, 76, 88, 134, 140, 148, 152, 176, 262, 268, 276, 280, 296, 304, 352, 518, 524, 532, 536, 552, 560, 592, 608, 704, 1030, 1036, 1044, 1048, 1064, 1072, 1096, 1104, 1120, 1184, 1216, 1408, 2054, 2060, 2068, 2072, 2088, 2096, 2120, 2128, 2144, 2192
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2020

Keywords

Comments

These are triples matching the pattern (2,1,2), (3,1,2), or (2,1,3).
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      22: (2,1,2)     296: (3,2,4)    1048: (6,1,4)
      38: (3,1,2)     304: (3,1,5)    1064: (5,2,4)
      44: (2,1,3)     352: (2,1,6)    1072: (5,1,5)
      70: (4,1,2)     518: (7,1,2)    1096: (4,3,4)
      76: (3,1,3)     524: (6,1,3)    1104: (4,2,5)
      88: (2,1,4)     532: (5,2,3)    1120: (4,1,6)
     134: (5,1,2)     536: (5,1,4)    1184: (3,2,6)
     140: (4,1,3)     552: (4,2,4)    1216: (3,1,7)
     148: (3,2,3)     560: (4,1,5)    1408: (2,1,8)
     152: (3,1,4)     592: (3,2,5)    2054: (9,1,2)
     176: (2,1,5)     608: (3,1,6)    2060: (8,1,3)
     262: (6,1,2)     704: (2,1,7)    2068: (7,2,3)
     268: (5,1,3)    1030: (8,1,2)    2072: (7,1,4)
     276: (4,2,3)    1036: (7,1,3)    2088: (6,2,4)
     280: (4,1,4)    1044: (6,2,3)    2096: (6,1,5)
		

Crossrefs

A000212 counts unimodal triples.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) counts 3-part partitions.
A001399(n - 6) counts 3-part strict partitions.
A001399(n - 6)*2 counts non-unimodal 3-part strict compositions.
A001399(n - 6)*4 counts unimodal 3-part strict compositions.
A001399(n - 6)*6 counts 3-part strict compositions.
A001523 counts unimodal compositions.
A001840 counts non-unimodal triples.
A059204 counts non-unimodal permutations.
A115981 counts non-unimodal compositions.
A328509 counts non-unimodal patterns.
A337459 ranks unimodal triples.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.
- Strict triples are A337453.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Intersection of A014311 and A335373.

A338469 Products of three odd prime numbers of odd index.

Original entry on oeis.org

125, 275, 425, 575, 605, 775, 935, 1025, 1175, 1265, 1331, 1445, 1475, 1675, 1705, 1825, 1955, 2057, 2075, 2255, 2425, 2575, 2585, 2635, 2645, 2725, 2783, 3175, 3179, 3245, 3425, 3485, 3565, 3685, 3725, 3751, 3925, 3995, 4015, 4175, 4301, 4475, 4565, 4715
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

Also Heinz numbers of integer partitions with 3 parts, all of which are odd and > 1. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
     125: {3,3,3}     1825: {3,3,21}    3425: {3,3,33}
     275: {3,3,5}     1955: {3,7,9}     3485: {3,7,13}
     425: {3,3,7}     2057: {5,5,7}     3565: {3,9,11}
     575: {3,3,9}     2075: {3,3,23}    3685: {3,5,19}
     605: {3,5,5}     2255: {3,5,13}    3725: {3,3,35}
     775: {3,3,11}    2425: {3,3,25}    3751: {5,5,11}
     935: {3,5,7}     2575: {3,3,27}    3925: {3,3,37}
    1025: {3,3,13}    2585: {3,5,15}    3995: {3,7,15}
    1175: {3,3,15}    2635: {3,7,11}    4015: {3,5,21}
    1265: {3,5,9}     2645: {3,9,9}     4175: {3,3,39}
    1331: {5,5,5}     2725: {3,3,29}    4301: {5,7,9}
    1445: {3,7,7}     2783: {5,5,9}     4475: {3,3,41}
    1475: {3,3,17}    3175: {3,3,31}    4565: {3,5,23}
    1675: {3,3,19}    3179: {5,7,7}     4715: {3,9,13}
    1705: {3,5,11}    3245: {3,5,17}    4775: {3,3,43}
		

Crossrefs

A046316 allows all primes (strict: A046389).
A338471 allows all odd primes (strict: A307534).
A338556 is the version for evens (strict: A338557).
A000009 counts partitions into odd parts (strict: A000700).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A005408 lists odds (strict: A056911).
A008284 counts partitions by sum and length.
A014311 is a ranking of 3-part compositions (strict: A337453).
A014612 lists Heinz numbers of 3-part partitions (strict: A007304).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A066207 lists numbers with all even prime indices (strict: A258117).
A066208 lists numbers with all odd prime indices (strict: A258116).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A285508 lists Heinz numbers of non-strict 3-part partitions.

Programs

  • Maple
    N:= 10000: # for terms <= N
    P0:= [seq(ithprime(i),i=3..numtheory:-pi(floor(N/25)),2)]:
    sort(select(`<=`,[seq(seq(seq(P0[i]*P0[j]*P0[k],k=1..j),j=1..i),i=1..nops(P0))], N)); # Robert Israel, Nov 12 2020
  • Mathematica
    Select[Range[1,1000,2],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • PARI
    isok(m) = my(f=factor(m)); (m%2) && (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338469(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(5,integer_nthroot(x,3)[0]+1),3)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024
Previous Showing 11-14 of 14 results.