cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A339286 Total number of interior vertices in the multigraphs of all unoriented series-parallel networks with n edges.

Original entry on oeis.org

0, 1, 4, 17, 62, 255, 1026, 4363, 18656, 81446, 357708, 1584110, 7042396, 31429998, 140626375, 630640342, 2833200433, 12748771157, 57445747751, 259170739397, 1170566884224, 5292311737901, 23949417255984, 108470668735077, 491664303153769, 2230174016940385, 10122784007130716
Offset: 1

Views

Author

Andrew Howroyd, Nov 30 2020

Keywords

Comments

See A339285 for additional details.

Crossrefs

Programs

  • PARI
    \\ See A339285 for VertexWeighted.
    seq(n)={subst(deriv(VertexWeighted(n,x,y)), y, 1)}

Formula

a(n) = Sum_{k=1..n-1} k*A339285(n,k).

A339287 Number of inequivalent colorings of unoriented series-parallel networks with n colored elements.

Original entry on oeis.org

1, 4, 15, 105, 873, 9997, 134582, 2096206, 36391653, 693779666, 14346005530, 319042302578, 7579064231400, 191264021808301, 5103735168371201, 143438421861618397, 4231407420255210941, 130633362289335958866, 4209546674788934624394, 141259712052820378949746
Offset: 1

Views

Author

Andrew Howroyd, Dec 22 2020

Keywords

Comments

Equivalence is up to permutation of the colors and reversal of all parts combined in series. Any number of colors may be used. See A339282 for additional details.

Examples

			In the following examples elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 4: (11), (12), (1|1), (1|2).
a(3) = 15: (111), (112), (121), (123), (1(1|1)), (1(1|2)), (1(2|2)), (1(2|3)), (1|1|1), (1|1|2), (1|2|3), (1|11), (1|12), (1|22), (1|23).
		

Crossrefs

Cf. A339225 (uncolored), A339233 (oriented), A339280, A339282, A339283, A339645.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    B(n)={my(Z=x*sv(1), p=Z+O(x^2)); for(n=2, n, p=sEulerT(p^2/(1+p) + Z)-1); p}
    cycleIndexSeries(n)={my(Z=x*sv(1), q=sRaise(B((n+1)\2), 2), s=x^2*sv(2)+q^2/(1+q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(1 + p); p=Z + sEulerT(t+(s-sRaise(t, 2))/2) - t - 1); (p+t-Z+B(n))/2}
    InequivalentColoringsSeq(cycleIndexSeries(15))

A339284 Number of unoriented series-parallel networks with integer valued elements summing to n.

Original entry on oeis.org

1, 3, 7, 23, 73, 281, 1112, 4779, 21139, 96793, 451631, 2144101, 10303984, 50042734, 245110900, 1209414659, 6005130171, 29983077169, 150437143336, 758110844897, 3835445581758, 19473373629628, 99189996107004, 506726776334889, 2595687705113097
Offset: 1

Views

Author

Andrew Howroyd, Nov 30 2020

Keywords

Comments

See A339282 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'.
a(1) = 1: (1).
a(2) = 3: (2), (11), (1|1).
a(3) = 7: (3), (12), (1(1|1)), (111), (1|2), (1|11), (1|1|1).
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z)={my(p=Z+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+Z)))); p}
    EdgeWeightedT(u)={my(Z=x*Ser(u), n=#u, q=subst(B((n+1)\2, Z), x, x^2), s=subst(Z,x,x^2)+q^2/(1+q), p=Z+O(x^2), t=p); for(n=1, n\2, t=Z + q*(1 + p); p=Z + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+t-Z+B(n,Z))/2}
    seq(n)={EdgeWeightedT(vector(n,i,1))}
Previous Showing 11-13 of 13 results.