cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A344292 Numbers m whose sum of prime indices A056239(m) is even and is at most twice the number of prime factors counted with multiplicity A001222(m).

Original entry on oeis.org

1, 3, 4, 9, 10, 12, 16, 27, 28, 30, 36, 40, 48, 64, 81, 84, 88, 90, 100, 108, 112, 120, 144, 160, 192, 208, 243, 252, 256, 264, 270, 280, 300, 324, 336, 352, 360, 400, 432, 448, 480, 544, 576, 624, 640, 729, 756, 768, 784, 792, 810, 832, 840, 880, 900, 972
Offset: 1

Views

Author

Gus Wiseman, May 22 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions of even numbers m with at least m/2 parts, counted by A000070 riffled with 0's, or A025065 with odd positions zeroed out.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}                 84: {1,1,2,4}
       3: {2}                88: {1,1,1,5}
       4: {1,1}              90: {1,2,2,3}
       9: {2,2}             100: {1,1,3,3}
      10: {1,3}             108: {1,1,2,2,2}
      12: {1,1,2}           112: {1,1,1,1,4}
      16: {1,1,1,1}         120: {1,1,1,2,3}
      27: {2,2,2}           144: {1,1,1,1,2,2}
      28: {1,1,4}           160: {1,1,1,1,1,3}
      30: {1,2,3}           192: {1,1,1,1,1,1,2}
      36: {1,1,2,2}         208: {1,1,1,1,6}
      40: {1,1,1,3}         243: {2,2,2,2,2}
      48: {1,1,1,1,2}       252: {1,1,2,2,4}
      64: {1,1,1,1,1,1}     256: {1,1,1,1,1,1,1,1}
      81: {2,2,2,2}         264: {1,1,1,2,5}
		

Crossrefs

These are the Heinz numbers of partitions counted by A000070 and A025065.
A subset of A300061 (sum of prime indices is even).
The conjugate opposite version is A320924, counted by A209816.
The conjugate opposite version allowing odds is A322109, counted by A110618.
The case of equality is A340387, counted by A000041.
The opposite version allowing odd weights is A344291, counted by A110618.
Allowing odd weights gives A344296, counted by A025065.
The opposite version is A344413, counted by A209816.
The conjugate version allowing odd weights is A344414, counted by A025065.
The case of equality in the conjugate case is A344415, counted by A035363.
The conjugate version is A344416, counted by A000070.
A001222 counts prime factors with multiplicity.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product.
A330950 counts partitions of n with Heinz number divisible by n.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[primeMS[#]]]&&PrimeOmega[#]>=Total[primeMS[#]]/2&]

Formula

Members m of A300061 such that A056239(m) <= 2*A001222(m).

A366318 Heinz numbers of integer partitions that are of length 2 or begin with n/2, where n is the sum of all parts.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 21, 22, 25, 26, 30, 33, 34, 35, 38, 39, 40, 46, 49, 51, 55, 57, 58, 62, 63, 65, 69, 70, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 106, 111, 112, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 154, 155, 158, 159
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     4: {1,1}      38: {1,8}         77: {4,5}
     6: {1,2}      39: {2,6}         82: {1,13}
     9: {2,2}      40: {1,1,1,3}     84: {1,1,2,4}
    10: {1,3}      46: {1,9}         85: {3,7}
    12: {1,1,2}    49: {4,4}         86: {1,14}
    14: {1,4}      51: {2,7}         87: {2,10}
    15: {2,3}      55: {3,5}         91: {4,6}
    21: {2,4}      57: {2,8}         93: {2,11}
    22: {1,5}      58: {1,10}        94: {1,15}
    25: {3,3}      62: {1,11}        95: {3,8}
    26: {1,6}      63: {2,2,4}      106: {1,16}
    30: {1,2,3}    65: {3,6}        111: {2,12}
    33: {2,5}      69: {2,9}        112: {1,1,1,1,4}
    34: {1,7}      70: {1,3,4}      115: {3,9}
    35: {3,4}      74: {1,12}       118: {1,17}
		

Crossrefs

The first condition alone is A001358, counted by A004526.
The complement of the first condition is A100959, counted by A058984.
The partitions with these Heinz numbers are counted by A238628.
The second condition alone is A344415, counted by A035363.
The complement of the second condition is A366319, counted by A086543.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A322109 ranks partitions of n with no part > n/2, counted by A110618.
A334201 adds up all prime indices except the greatest.
A344296 solves for k in A001222(k) >= A056239(k)/2, counted by A025065.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[prix[#]]==2||MemberQ[prix[#],Total[prix[#]]/2]&]

Formula

Union of A001358 and A344415.

A363261 The partial sums of the prime indices of n include half the sum of all prime indices of n.

Original entry on oeis.org

4, 9, 12, 16, 25, 30, 40, 48, 49, 63, 64, 70, 81, 84, 108, 112, 121, 144, 154, 160, 165, 169, 192, 198, 220, 256, 264, 270, 273, 286, 289, 325, 351, 352, 360, 361, 364, 390, 442, 448, 468, 480, 520, 529, 561, 567, 576, 595, 624, 625, 640, 646, 675, 714, 729
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   4: {1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  25: {3,3}
  30: {1,2,3}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
  63: {2,2,4}
  64: {1,1,1,1,1,1}
  70: {1,3,4}
  81: {2,2,2,2}
  84: {1,1,2,4}
		

Crossrefs

Partitions of this type are counted by A322439.
For parts instead of partial sums we have A344415, counted by A035363.
A025065 counts palindromic partitions, ranked by A265640.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A301987 lists numbers whose sum of prime indices equals their product.
A322109 ranks partitions of n with no part > n/2, counted by A110618.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MemberQ[Accumulate[prix[#]],Total[prix[#]]/2]&]
Previous Showing 31-33 of 33 results.