cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A340857 Decimal expansion of constant K5 = 29*log(2+sqrt(5))*(Product_{primes p == 1 (mod 5)} (1-4*(2*p-1)/(p*(p+1)^2)))/(15*Pi^2).

Original entry on oeis.org

2, 6, 2, 6, 5, 2, 1, 8, 8, 7, 2, 0, 5, 3, 6, 7, 6, 6, 6, 7, 5, 9, 6, 2, 0, 1, 1, 4, 7, 2, 0, 8, 8, 3, 4, 6, 5, 3, 0, 2, 0, 4, 3, 9, 3, 0, 6, 4, 7, 4, 4, 7, 3, 9, 1, 0, 6, 8, 2, 5, 5, 1, 0, 5, 8, 7, 0, 9, 2, 6, 6, 8, 3, 8, 6, 9, 0, 2, 2, 7, 4, 1, 7, 9, 4, 1, 9, 3, 8, 3, 6, 5, 5, 2, 3, 5, 0, 0, 2, 0, 1, 0, 0, 8, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Finch and Sebah, 2009, p. 7 (see link) call this constant K_5. K_5 is related to the Mertens constant C(5,1) (see A340839). For more references see the links in A340711. Finch and Sebah give the following definition:
Consider the asymptotic enumeration of m-th order primitive Dirichlet characters mod n. Let b_m(n) denote the count of such characters. There exists a constant 0 < K_m < oo such that Sum_{n <= N} b_m(n) ∼ K_m*N*log(N)^(d(m) - 2) as N -> oo, where d(m) is the number of divisors of m.

Examples

			0.262652188720536766675962011472088346530204393064744739106825510587...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 4*(2*p-1)/(p*(p+1)^2));
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[5, 1, m]; sump = sump + difp; PrintTemporary[m]; m++];
    RealDigits[Chop[N[29*Log[2+Sqrt[5]]/(15*Pi^2) * Exp[sump], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 25 2021, took over 50 minutes *)

Formula

Equals (29/25)*(Product_{primes p} (1-1/p)^2*(1+gcd(p-1,5)/(p-1))) [Finch and Sebah, 2009, p. 10].

A340565 Decimal expansion of the Product_{lesser twin primes p == 5 (mod 6)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 5, 6, 9, 3, 2, 2, 9, 1, 4
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2021

Keywords

Comments

Lesser twin primes A001359 (with the exception of the first prime, 3) are congruent to 5 mod 6: this constant is smaller than A340576.
By extrapolating method most probably the next two decimal digits are 1.056932291(46).
The known high-precision algorithms for Euler products are based on the Dirichlet L function and the Moebius inversion formula (see Mathematica procedure of Jean-François Alcover in A175646).
The constant is between 1.056932291453... and 1.056932291494. - R. J. Mathar, Feb 14 2025

Examples

			1.0569322914...
		

Crossrefs

Extensions

One more digit confirmed by a bracketing of partial products - R. J. Mathar, Feb 14 2025
Previous Showing 11-12 of 12 results.