cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A340787 Heinz numbers of integer partitions of positive rank.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
     3: (2)      28: (4,1,1)    49: (4,4)      69: (9,2)
     5: (3)      29: (10)       51: (7,2)      70: (4,3,1)
     7: (4)      31: (11)       52: (6,1,1)    71: (20)
    10: (3,1)    33: (5,2)      53: (16)       73: (21)
    11: (5)      34: (7,1)      55: (5,3)      74: (12,1)
    13: (6)      35: (4,3)      57: (8,2)      76: (8,1,1)
    14: (4,1)    37: (12)       58: (10,1)     77: (5,4)
    15: (3,2)    38: (8,1)      59: (17)       78: (6,2,1)
    17: (7)      39: (6,2)      61: (18)       79: (22)
    19: (8)      41: (13)       62: (11,1)     82: (13,1)
    21: (4,2)    42: (4,2,1)    63: (4,2,2)    83: (23)
    22: (5,1)    43: (14)       65: (6,3)      85: (7,3)
    23: (9)      44: (5,1,1)    66: (5,2,1)    86: (14,1)
    25: (3,3)    46: (9,1)      67: (19)       87: (10,2)
    26: (6,1)    47: (15)       68: (7,1,1)    88: (5,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A064173.
The odd case is A101707 (A340604).
The even case is A101708 (A340605).
The negative version is (A340788).
A001222 counts prime factors.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A200750 = partitions whose length and maximum are relatively prime.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A063995/A105806 count partitions by Dyson rank.
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602), with strict case A117192.
A340692 counts partitions of odd rank (A340603), with strict case A117193.

Programs

  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]>PrimeOmega[#]&]

Formula

For all terms A061395(a(n)) > A001222(a(n)).

A340828 Number of strict integer partitions of n whose maximum part is a multiple of their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 2, 4, 5, 6, 6, 7, 8, 11, 10, 13, 17, 18, 21, 24, 27, 30, 35, 39, 46, 53, 61, 68, 79, 87, 97, 110, 123, 139, 157, 175, 196, 222, 247, 278, 312, 347, 385, 433, 476, 531, 586, 651, 720, 800, 883, 979, 1085, 1200, 1325, 1464, 1614, 1777
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Examples

			The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16):
  1  2  3   4  5   6    7   8   9    A     B    C    D    E     F      G
        21     41  42   43  62  63   64    65   84   85   86    87     A6
                   321  61      81   82    83   A2   A3   A4    A5     C4
                                621  631   A1   642  C1   C2    C3     E2
                                     4321  632  651  643  653   E1     943
                                           641  921  652  932   654    952
                                                     931  941   942    961
                                                          8321  951    C31
                                                                C21    8431
                                                                8421   8521
                                                                54321
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict version is A168659 (A340609/A340610).
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A064173 counts partitions of positive/negative rank (A340787/A340788).
A067538 counts partitions whose length/max divides sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A096401 counts strict partition with length equal to minimum.
A102627 counts strict partitions with length dividing sum.
A326842 counts partitions whose length and parts all divide sum (A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340829 counts strict partitions with Heinz number divisible by sum.
A340830 counts strict partitions with all parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Max@@#,Length[#]]&]],{n,30}]

A340929 Heinz numbers of integer partitions of odd negative rank.

Original entry on oeis.org

4, 12, 16, 18, 27, 40, 48, 60, 64, 72, 90, 100, 108, 112, 135, 150, 160, 162, 168, 192, 225, 240, 243, 250, 252, 256, 280, 288, 352, 360, 375, 378, 392, 400, 420, 432, 448, 528, 540, 567, 588, 600, 625, 630, 640, 648, 672, 700, 768, 792, 810, 832, 880, 882
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
       4: (1,1)             150: (3,3,2,1)
      12: (2,1,1)           160: (3,1,1,1,1,1)
      16: (1,1,1,1)         162: (2,2,2,2,1)
      18: (2,2,1)           168: (4,2,1,1,1)
      27: (2,2,2)           192: (2,1,1,1,1,1,1)
      40: (3,1,1,1)         225: (3,3,2,2)
      48: (2,1,1,1,1)       240: (3,2,1,1,1,1)
      60: (3,2,1,1)         243: (2,2,2,2,2)
      64: (1,1,1,1,1,1)     250: (3,3,3,1)
      72: (2,2,1,1,1)       252: (4,2,2,1,1)
      90: (3,2,2,1)         256: (1,1,1,1,1,1,1,1)
     100: (3,3,1,1)         280: (4,3,1,1,1)
     108: (2,2,2,1,1)       288: (2,2,1,1,1,1,1)
     112: (4,1,1,1,1)       352: (5,1,1,1,1,1)
     135: (3,2,2,2)         360: (3,2,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A101707.
The positive version is A101707 (A340604).
The even version is A101708 (A340930).
The not necessarily odd version is A064173 (A340788).
A001222 counts prime factors.
A027193 counts partitions of odd length (A026424).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A063995/A105806 count partitions by Dyson rank.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324516 counts partitions with rank equal to maximum minus minimum part (A324515).
A324518 counts partitions with rank equal to greatest part (A324517).
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[2,100],OddQ[rk[#]]&&rk[#]<0&]

Formula

For all terms, A061395(a(n)) - A001222(a(n)) is odd and negative.

A340930 Heinz numbers of integer partitions of even negative rank.

Original entry on oeis.org

8, 24, 32, 36, 54, 80, 81, 96, 120, 128, 144, 180, 200, 216, 224, 270, 300, 320, 324, 336, 384, 405, 450, 480, 486, 500, 504, 512, 560, 576, 675, 704, 720, 729, 750, 756, 784, 800, 840, 864, 896, 1056, 1080, 1125, 1134, 1176, 1200, 1250, 1260, 1280, 1296, 1344
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
       8: (1,1,1)             270: (3,2,2,2,1)
      24: (2,1,1,1)           300: (3,3,2,1,1)
      32: (1,1,1,1,1)         320: (3,1,1,1,1,1,1)
      36: (2,2,1,1)           324: (2,2,2,2,1,1)
      54: (2,2,2,1)           336: (4,2,1,1,1,1)
      80: (3,1,1,1,1)         384: (2,1,1,1,1,1,1,1)
      81: (2,2,2,2)           405: (3,2,2,2,2)
      96: (2,1,1,1,1,1)       450: (3,3,2,2,1)
     120: (3,2,1,1,1)         480: (3,2,1,1,1,1,1)
     128: (1,1,1,1,1,1,1)     486: (2,2,2,2,2,1)
     144: (2,2,1,1,1,1)       500: (3,3,3,1,1)
     180: (3,2,2,1,1)         504: (4,2,2,1,1,1)
     200: (3,3,1,1,1)         512: (1,1,1,1,1,1,1,1,1)
     216: (2,2,2,1,1,1)       560: (4,3,1,1,1,1)
     224: (4,1,1,1,1,1)       576: (2,2,1,1,1,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A101708.
The positive version is (A340605).
The odd version is A101707 (A340929).
The not necessarily even version is A064173 (A340788).
A001222 counts prime factors.
A027187 counts partitions of even length.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058696 counts partitions of even numbers.
A061395 selects the maximum prime index.
A063995/A105806 count partitions by Dyson rank.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[2,100],EvenQ[rk[#]]&&rk[#]<0&]
Previous Showing 11-14 of 14 results.