cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A340851 Number of factorizations of n such that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also factorizations whose number of factors is divisible by their least common multiple.

Examples

			The a(n) factorizations for n = 8192, 46656, 73728:
  2*2*2*2*2*4*8*8          6*6*6*6*6*6              2*2*2*2*2*2*2*2*2*4*6*6
  2*2*2*2*4*4*4*8          2*2*2*2*2*2*3*3*3*3*3*3  2*2*2*2*2*2*2*2*3*4*4*6
  2*2*2*4*4*4*4*4                                   2*2*2*2*2*2*2*3*3*4*4*4
  2*2*2*2*2*2*2*2*2*2*2*4                           2*2*2*2*2*2*2*2*2*2*6*12
                                                    2*2*2*2*2*2*2*2*2*3*4*12
		

Crossrefs

The version for partitions is A340693, with reciprocal version A143773.
Positions of nonzero terms are A340852.
The reciprocal version is A340853.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340785 counts factorizations into even numbers, even-length case A340786.
A340831/A340832 count factorizations with odd maximum/minimum.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],And@@IntegerQ/@(Length[#]/#)&]],{n,100}]

A340853 Number of factorizations of n such that every factor is a multiple of the number of factors.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also factorizations whose greatest common divisor is a multiple of the number of factors.

Examples

			The a(n) factorizations for n = 2, 4, 16, 48, 96, 144, 216, 240, 432:
  2   4     16    48     96     144     216      240     432
      2*2   2*8   6*8    2*48   2*72    4*54     4*60    6*72
            4*4   2*24   4*24   4*36    6*36     6*40    8*54
                  4*12   6*16   6*24    12*18    8*30    12*36
                         8*12   8*18    2*108    10*24   18*24
                                12*12   6*6*6    12*20   2*216
                                        3*3*24   2*120   4*108
                                        3*6*12           3*3*48
                                                         3*6*24
                                                         6*6*12
                                                         3*12*12
		

Crossrefs

Positions of 1's are A048103.
Positions of terms > 1 are A100716.
The version for partitions is A143773 (A316428).
The reciprocal for partitions is A340693 (A340606).
The version for strict partitions is A340830.
The reciprocal version is A340851.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340785 counts factorizations into even factors, even-length case A340786.
A340831/A340832 counts factorizations with odd maximum/minimum.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],n>1&&Divisible[GCD@@#,Length[#]]&]],{n,100}]

A342081 Numbers without an inferior odd divisor > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 118, 122, 124
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2021

Keywords

Comments

We define a divisor d|n to be inferior if d <= n/d. Inferior divisors are counted by A038548 and listed by A161906.
Numbers n such that n is either a power of 2 or has a single odd prime factor > sqrt(n). Equivalently, numbers n such that all odd prime factors are > sqrt(n). - Chai Wah Wu, Mar 08 2021

Examples

			The divisors > 1 of 72 are {2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}, of which {3, 9} are odd and {2, 3, 4, 6, 8} are inferior, with intersection {3}, so 72 is not in the sequence.
		

Crossrefs

The strictly inferior version is the same with A001248 added.
Positions of 1's in A069288.
The superior version is A116882, with complement A116883.
The complement is A342082.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
A038548 counts superior (or inferior) divisors, with strict case A056924.
- Odd -
A000009 counts partitions into odd parts, ranked by A066208.
A001227 counts odd divisors.
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A058695 counts partitions of odd numbers.
A067659 counts strict partitions of odd length, ranked by A030059.
A340101 counts factorizations into odd factors; A340102 also has odd length.
A340854/A340855 cannot/can be factored with odd minimum factor.
A341594 counts strictly superior odd divisors
A341675 counts superior odd divisors.
- Inferior: A033676, A066839, A161906.
- Strictly Inferior A333805, A341674.
- Strictly Superior: A064052/A048098, A341645/A341646.

Programs

  • Mathematica
    Select[Range[100],Function[n,Select[Divisors[n]//Rest,OddQ[#]&&#<=n/#&]=={}]]
  • PARI
    is(n) = #select(x -> x > 2 && x^2 <= n, factor(n)[, 1]) == 0; \\ Amiram Eldar, Nov 01 2024
  • Python
    from sympy import primefactors
    A342081_list = [n for n in range(1,10**3) if len([p for p in primefactors(n) if p > 2 and p*p <= n]) == 0] # Chai Wah Wu, Mar 08 2021
    

A342082 Numbers with an inferior odd divisor > 1.

Original entry on oeis.org

9, 12, 15, 18, 21, 24, 25, 27, 30, 33, 35, 36, 39, 40, 42, 45, 48, 49, 50, 51, 54, 55, 56, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 80, 81, 84, 85, 87, 90, 91, 93, 95, 96, 98, 99, 100, 102, 105, 108, 110, 111, 112, 114, 115, 117, 119, 120, 121, 123, 125
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2021

Keywords

Comments

We define a divisor d|n to be inferior if d <= n/d. Inferior divisors are counted by A038548 and listed by A161906.
Numbers n with an odd prime factor <= sqrt(n). - Chai Wah Wu, Mar 09 2021

Examples

			The divisors > 1 of 72 are {2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}, of which {3, 9} are odd and {2, 3, 4, 6, 8} are inferior, with intersection {3}, so 72 is in the sequence.
		

Crossrefs

The strictly inferior version is the same with A001248 removed.
Positions of terms > 1 in A069288.
The superior version is A116882, with complement A116883.
The complement is A342081.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
A038548 counts superior (or inferior) divisors, with strict case A056924.
- Odd -
A000009 counts partitions into odd parts, ranked by A066208.
A001227 counts odd divisors.
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A058695 counts partitions of odd numbers.
A067659 counts strict partitions of odd length, ranked by A030059.
A340101 counts factorizations into odd factors; A340102 also has odd length.
A340854/A340855 cannot/can be factored with odd minimum factor.
A341594 counts strictly superior odd divisors
A341675 counts superior odd divisors.
- Inferior: A033676, A066839, A161906.
- Strictly Inferior A333805, A341674.
- Strictly Superior: A064052/A048098, A341645/A341646.

Programs

  • Mathematica
    Select[Range[100],Function[n,Select[Divisors[n]//Rest,OddQ[#]&&#<=n/#&]!={}]]
  • PARI
    is(n) = #select(x -> x > 2 && x^2 <= n, factor(n)[, 1]) > 0; \\ Amiram Eldar, Nov 01 2024
  • Python
    from sympy import primefactors
    A342082_list = [n for n in range(1,10**3) if len([p for p in primefactors(n) if p > 2 and p*p <= n]) > 0] # Chai Wah Wu, Mar 09 2021
    
Previous Showing 11-14 of 14 results.