cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A337381 Numbers k for which A003973(k) >= 2*sigma(k).

Original entry on oeis.org

6, 8, 9, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 35, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Comments

Note that A003973(n) >= sigma(n) for all n. See A336852.
Like the abundancy index (ratio A000203(n)/n), and ratio A003961(n)/n, the ratio A003973(n)/sigma(n) is also multiplicative and > 1 for all n > 1. Thus if the number has a proper divisor that is in this sequence, then the number itself is also. See A337543 for those terms included here, but which have no proper divisor in this sequence. - Antti Karttunen, Aug 31 2020
All terms are in A246282 because A341528(n) < A341529(n) for all n > 1. - Antti Karttunen, Feb 22 2021

Crossrefs

Cf. A337382 (complement), A337383 (characteristic function).
Subsequences: A337378, A337384, A337386, A337543 (primitive terms).
Subsequence of A246282.

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    isA337381(n) = (A003973(n)>=2*sigma(n));

A341526 Numerator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 8, 9, 52, 20, 4, 21, 64, 279, 160, 77, 26, 117, 28, 6, 1936, 170, 248, 114, 1040, 189, 308, 115, 32, 1425, 104, 1053, 26, 464, 16, 589, 1664, 231, 1360, 10, 124, 777, 304, 1053, 1280, 902, 42, 516, 22, 372, 230, 423, 968, 343, 3800, 17, 676, 530, 468, 110, 224, 513, 3712, 1829, 104, 2074, 589, 5859, 69952, 780, 154
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Like the ratios sigma(n)/n, A003973(n)/A003961(n) and A003961(n)/n, also the ratio r(n) = A341528(n)/A341529(n) is multiplicative: if gcd(x,y) = 1, r(x*y) = r(x)*r(y).

Crossrefs

Cf. A341527 (denominators).
Cf. A341626 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Numerator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341528(n) / A341530(n) = A341528(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) < A341527(n).

A341627 Square array A(n,k) = A341527(A246278(n,k)), read by falling antidiagonals; denominators of the columnwise first quotients of A341605/A341606.

Original entry on oeis.org

9, 63, 10, 5, 325, 21, 81, 7, 1519, 22, 189, 1250, 11, 363, 78, 35, 220, 13377, 52, 22477, 119, 33, 455, 117, 66550, 34, 52887, 171, 2511, 260, 4774, 374, 804102, 133, 110827, 115, 325, 6875, 833, 2574, 6669, 584647, 69, 201549, 116, 1323, 3038, 1875181, 627, 205751, 13685, 1790199, 58, 465073, 465
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n =  1       2    3        4      5        6      7             8        9
  2n =  2       4    6        8     10       12     14            16       18
----+--------------------------------------------------------------------------
  1 |   9,     63,   5,      81,   189,      35,    33,         2511,     325,
  2 |  10,    325,   7,    1250,   220,     455,   260,         6875,    3038,
  3 |  21,   1519,  11,   13377,   117,    4774,   833,      1875181,    1089,
  4 |  22,    363,  52,   66550,   374,    2574,   627,     41009441,    6422,
  5 |  78,  22477,  34,  804102,  6669,  205751,  1495,    459974905,  317322,
  6 | 119,  52887, 133,  584647, 13685,  531981, 13804,   2584223261,  775789,
  7 | 171, 110827,  69, 1790199,  9918,  670795, 15903,  11564815861, 1813941,
  8 | 115, 201549,  58, 2202227, 17825, 1016508, 34040,  38495207801, 2325365,
  9 | 116, 465073,  93, 5170468, 68672, 7457205, 90364, 206922836641, 3348124,
etc.
		

Crossrefs

Cf. A341626 (numerators), A341628 (the greatest prime factor of these terms).

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A341627sq(row,col) = A341527(A246278sq(row,col));
    A341627list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341627sq(col,(a-(col-1))))); (v); };
    v341627 = A341627list(up_to);
    A341627(n) = v341627[n];

Formula

A(n,k) = A341527(A246278(n,k)), where A341527(n) is the denominator of the ratio (n * sigma(A003961(n))) / (sigma(n) * A003961(n)), i.e., of A341528(n)/A341529(n).
For all n, k, A(n,k) > A341626(n, k).

A341525 Numerator of A003973(n) / A003961(n).

Original entry on oeis.org

1, 4, 6, 13, 8, 8, 12, 40, 31, 32, 14, 26, 18, 16, 48, 121, 20, 124, 24, 104, 72, 56, 30, 16, 57, 24, 156, 52, 32, 64, 38, 364, 84, 80, 96, 403, 42, 32, 108, 320, 44, 96, 48, 14, 248, 40, 54, 242, 133, 76, 24, 26, 60, 208, 16, 160, 144, 128, 62, 208, 68, 152, 372, 1093, 144, 112, 72, 260, 36, 128, 74, 248, 80, 56
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Also numerator of the ratio (A341528(n)/A341529(n)) / (n/sigma(n)).

Crossrefs

Cf. A336849 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/((p - 1)*p^e); g[p_, e_] := f[NextPrime[p], e]; a[1] = 1; a[n_] := Numerator[Times @@ g @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341525(n) = { my(u=A003961(n), s=sigma(u)); (s/gcd(u, s)); };

Formula

a(n) = A017665(A003961(n)).
a(n) = A003973(n) / A336850(n) = A003973(n) / gcd(A003961(n), A003973(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} A341525(k)/A336849(k) = 1 / Product_{p prime} (1 - 1/(p*nextprime(p))) = 1.3766054560..., where nextprime(p) = A151800(p). - Amiram Eldar, Dec 28 2024

A342661 a(n) = n * sigma(A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma gives the sum of the divisors of its argument.

Original entry on oeis.org

1, 2, 9, 4, 20, 18, 42, 8, 63, 40, 88, 36, 156, 84, 180, 16, 238, 126, 342, 80, 378, 176, 460, 72, 325, 312, 405, 168, 696, 360, 930, 32, 792, 476, 840, 252, 1184, 684, 1404, 160, 1558, 756, 1806, 352, 1260, 920, 2068, 144, 1519, 650, 2142, 624, 2544, 810, 1760, 336, 3078, 1392, 3186, 720, 3660, 1860, 2646, 64, 3120
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^e, Module[{q = NextPrime[p, -1]}, p^e*(q^(e + 1) - 1)/(q - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A326041(n) = sigma(A064989(n));
    A342661(n) = (n*A326041(n));

Formula

Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = n * A326041(n) = n * A000203(A064989(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/9) * Product_{p prime > 2} (p^3/((p+1)*(p^2-prevprime(p)))) = 0.1815217..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022

A342662 a(n) = sigma(n) * A064989(n), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 3, 8, 7, 18, 24, 40, 15, 52, 54, 84, 56, 154, 120, 144, 31, 234, 156, 340, 126, 320, 252, 456, 120, 279, 462, 320, 280, 690, 432, 928, 63, 672, 702, 720, 364, 1178, 1020, 1232, 270, 1554, 960, 1804, 588, 936, 1368, 2064, 248, 1425, 837, 1872, 1078, 2538, 960, 1512, 600, 2720, 2070, 3180, 1008, 3658, 2784, 2080, 127
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]*(p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A342662(n) = (sigma(n)*A064989(n));

Formula

Multiplicative with a(p^e) = q^e * (p^(e+1)-1)/(p-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = A000203(n) * A064989(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/63) * Product_{p prime > 2} p^4*(p-1)/((p^3-prevprime(p))*(p^2-prevprime(p))) = 0.1935405..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022

A341628 Square array A(n,k) = A006530(A341527(A246278(n,k))), read by falling antidiagonals.

Original entry on oeis.org

3, 7, 5, 5, 13, 7, 3, 7, 31, 11, 7, 5, 11, 11, 13, 7, 11, 13, 13, 19, 17, 11, 13, 13, 11, 17, 61, 19, 31, 13, 31, 17, 61, 19, 307, 23, 13, 11, 17, 13, 19, 17, 23, 127, 29, 7, 31, 71, 19, 19, 23, 29, 29, 79, 31, 13, 13, 11, 2801, 23, 61, 29, 181, 31, 67, 37, 5, 17, 31, 19, 3221, 29, 307, 31, 53, 37, 331, 41
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n=   1     2   3     4   5     6   7        8     9    10  11    12  13    14
  2n=   2     4   6     8  10    12  14       16    18    20  22    24  26    28
-----+---------------------------------------------------------------------------
   1 |  3,    7,  5,    3,  7,    7, 11,      31,   13,    7, 13,    5, 17,   11,
   2 |  5,   13,  7,    5, 11,   13, 13,      11,   31,   13, 17,    7, 19,   13,
   3 |  7,   31, 11,   13, 13,   31, 17,      71,   11,   31, 19,   13, 23,   31,
   4 | 11,   11, 13,   11, 17,   13, 19,    2801,   19,   17, 23,   13, 29,   19,
   5 | 13,   19, 17,   61, 19,   19, 23,    3221,   61,   19, 29,   61, 31,   23,
   6 | 17,   61, 19,   17, 23,   61, 29,   30941,  307,   61, 31,   19, 37,   61,
   7 | 19,  307, 23,   29, 29,  307, 31,   88741,  127,  307, 37,   29, 41,  307,
   8 | 23,  127, 29,  181, 31,  127, 37,     911,   79,  127, 41,  181, 43,  127,
   9 | 29,   79, 31,   53, 37,   79, 41,  292561,   67,   79, 43,   53, 47,   79,
  10 | 31,   67, 37,  421, 41,   67, 43,  732541,  331,   67, 47,  421, 53,   67,
  11 | 37,  331, 41,   37, 43,  331, 47,   17351,   67,  331, 53,   41, 59,  331,
  12 | 41,   67, 43,  137, 47,   67, 53,    4271, 1723,   67, 59,  137, 61,   67,
  13 | 43, 1723, 47,   43, 53, 1723, 59,  579281,  631, 1723, 61,   47, 67, 1723,
  14 | 47,  631, 53,   47, 59,  631, 61, 3500201,   61,  631, 67,   53, 71,  631,
  15 | 53,   61, 59,   53, 61,   61, 67,   14621,  409,   61, 71,   59, 73,   67,
  16 | 59,  409, 61,  281, 67,  409, 71,    5581, 3541,  409, 73,  281, 79,  409,
  17 | 61, 3541, 67, 1741, 71, 3541, 73,     181,   97, 3541, 79, 1741, 83, 3541,
  18 | 67,   97, 71, 1861, 73,   97, 79,   21491,   71,   97, 83, 1861, 89,   97,
  19 | 71,   71, 73,  449, 79,   73, 83,   26881, 5113,   79, 89,  449, 97,   83,
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A341528(n) = (n*sigma(A003961(n)));
    A341529(n) = (sigma(n)*A003961(n));
    A341527(n) = denominator(A341528(n) / A341529(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A341628sq(row,col) = A006530(A341527(A246278sq(row,col)));
    A341628list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341628sq(col,(a-(col-1))))); (v); };
    v341628 = A341628list(up_to);
    A341628(n) = v341628[n];

Formula

A(n,k) = A006530(A341627(n,k)) = A006530(A341527(A246278(n,k))).

A346239 Möbius transform of A341512, sigma(n)*A003961(n) - n*sigma(A003961(n)).

Original entry on oeis.org

0, 1, 2, 10, 2, 33, 4, 74, 44, 55, 2, 278, 4, 115, 116, 490, 2, 613, 4, 498, 242, 169, 6, 1942, 92, 265, 742, 1046, 2, 1591, 6, 3086, 344, 355, 330, 4986, 4, 487, 542, 3570, 2, 3347, 4, 1638, 2326, 737, 6, 12542, 376, 2121, 716, 2546, 6, 9869, 388, 7510, 986, 943, 2, 12894, 6, 1225, 4872, 18970, 630, 5353, 4, 3498, 1492
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Cf. also the sequences A001359, A029710, A031924 that give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A341512(d).
a(n) = A341512(n) - A346240(n).
a(n) = A347125(n) - A347124(n). - Antti Karttunen, Aug 25 2021

A342673 a(n) = gcd(n, sigma(A003961(n))), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 2, 3, 1, 1, 6, 1, 8, 1, 2, 1, 6, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 24, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 2, 3, 40, 1, 6, 1, 2, 1, 2, 1, 6, 7, 2, 3, 26, 1, 6, 1, 8, 3, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 4, 3, 2, 1, 8, 1, 2, 3, 4, 7, 6, 1, 8, 1, 2, 1, 12, 5, 2, 3, 8, 1, 2, 1, 2, 3, 2, 1, 24, 1, 14, 1, 1, 1, 6, 1, 8, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342673(n) = gcd(n,sigma(A003961(n)));

Formula

a(n) = gcd(n, A003973(n)) = gcd(n, A000203(A003961(n))).

A346240 Difference between A341512 and its Möbius transform.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 11, 2, 3, 0, 46, 0, 5, 4, 85, 0, 80, 0, 68, 6, 3, 0, 398, 2, 5, 46, 130, 0, 209, 0, 575, 4, 3, 6, 981, 0, 5, 6, 640, 0, 397, 0, 182, 164, 7, 0, 2830, 4, 150, 4, 280, 0, 1435, 4, 1250, 6, 3, 0, 2586, 0, 7, 292, 3661, 6, 551, 0, 368, 8, 507, 0, 7983, 0, 5, 212, 502, 6, 847, 0, 4700, 788, 3, 0, 5078, 4, 5, 4, 1894
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Programs

Formula

a(n) = -Sum_{d|n, dA008683(n/d) * A341512(d).
a(n) = A341512(n) - A346239(n).
Previous Showing 11-20 of 20 results.