cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A341628 Square array A(n,k) = A006530(A341527(A246278(n,k))), read by falling antidiagonals.

Original entry on oeis.org

3, 7, 5, 5, 13, 7, 3, 7, 31, 11, 7, 5, 11, 11, 13, 7, 11, 13, 13, 19, 17, 11, 13, 13, 11, 17, 61, 19, 31, 13, 31, 17, 61, 19, 307, 23, 13, 11, 17, 13, 19, 17, 23, 127, 29, 7, 31, 71, 19, 19, 23, 29, 29, 79, 31, 13, 13, 11, 2801, 23, 61, 29, 181, 31, 67, 37, 5, 17, 31, 19, 3221, 29, 307, 31, 53, 37, 331, 41
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n=   1     2   3     4   5     6   7        8     9    10  11    12  13    14
  2n=   2     4   6     8  10    12  14       16    18    20  22    24  26    28
-----+---------------------------------------------------------------------------
   1 |  3,    7,  5,    3,  7,    7, 11,      31,   13,    7, 13,    5, 17,   11,
   2 |  5,   13,  7,    5, 11,   13, 13,      11,   31,   13, 17,    7, 19,   13,
   3 |  7,   31, 11,   13, 13,   31, 17,      71,   11,   31, 19,   13, 23,   31,
   4 | 11,   11, 13,   11, 17,   13, 19,    2801,   19,   17, 23,   13, 29,   19,
   5 | 13,   19, 17,   61, 19,   19, 23,    3221,   61,   19, 29,   61, 31,   23,
   6 | 17,   61, 19,   17, 23,   61, 29,   30941,  307,   61, 31,   19, 37,   61,
   7 | 19,  307, 23,   29, 29,  307, 31,   88741,  127,  307, 37,   29, 41,  307,
   8 | 23,  127, 29,  181, 31,  127, 37,     911,   79,  127, 41,  181, 43,  127,
   9 | 29,   79, 31,   53, 37,   79, 41,  292561,   67,   79, 43,   53, 47,   79,
  10 | 31,   67, 37,  421, 41,   67, 43,  732541,  331,   67, 47,  421, 53,   67,
  11 | 37,  331, 41,   37, 43,  331, 47,   17351,   67,  331, 53,   41, 59,  331,
  12 | 41,   67, 43,  137, 47,   67, 53,    4271, 1723,   67, 59,  137, 61,   67,
  13 | 43, 1723, 47,   43, 53, 1723, 59,  579281,  631, 1723, 61,   47, 67, 1723,
  14 | 47,  631, 53,   47, 59,  631, 61, 3500201,   61,  631, 67,   53, 71,  631,
  15 | 53,   61, 59,   53, 61,   61, 67,   14621,  409,   61, 71,   59, 73,   67,
  16 | 59,  409, 61,  281, 67,  409, 71,    5581, 3541,  409, 73,  281, 79,  409,
  17 | 61, 3541, 67, 1741, 71, 3541, 73,     181,   97, 3541, 79, 1741, 83, 3541,
  18 | 67,   97, 71, 1861, 73,   97, 79,   21491,   71,   97, 83, 1861, 89,   97,
  19 | 71,   71, 73,  449, 79,   73, 83,   26881, 5113,   79, 89,  449, 97,   83,
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A341528(n) = (n*sigma(A003961(n)));
    A341529(n) = (sigma(n)*A003961(n));
    A341527(n) = denominator(A341528(n) / A341529(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A341628sq(row,col) = A006530(A341527(A246278sq(row,col)));
    A341628list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341628sq(col,(a-(col-1))))); (v); };
    v341628 = A341628list(up_to);
    A341628(n) = v341628[n];

Formula

A(n,k) = A006530(A341627(n,k)) = A006530(A341527(A246278(n,k))).

A346239 Möbius transform of A341512, sigma(n)*A003961(n) - n*sigma(A003961(n)).

Original entry on oeis.org

0, 1, 2, 10, 2, 33, 4, 74, 44, 55, 2, 278, 4, 115, 116, 490, 2, 613, 4, 498, 242, 169, 6, 1942, 92, 265, 742, 1046, 2, 1591, 6, 3086, 344, 355, 330, 4986, 4, 487, 542, 3570, 2, 3347, 4, 1638, 2326, 737, 6, 12542, 376, 2121, 716, 2546, 6, 9869, 388, 7510, 986, 943, 2, 12894, 6, 1225, 4872, 18970, 630, 5353, 4, 3498, 1492
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Cf. also the sequences A001359, A029710, A031924 that give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A341512(d).
a(n) = A341512(n) - A346240(n).
a(n) = A347125(n) - A347124(n). - Antti Karttunen, Aug 25 2021

A342672 a(n) = lcm(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 20, 63, 42, 60, 88, 135, 325, 126, 156, 1260, 238, 264, 840, 2511, 342, 975, 460, 126, 1760, 468, 696, 540, 1519, 714, 1000, 5544, 930, 2520, 1184, 1701, 3120, 1026, 3696, 20475, 1558, 1380, 4760, 1890, 1806, 5280, 2068, 3276, 13650, 2088, 2544, 50220, 6897, 4557, 6840, 14994, 3186, 3000, 6552, 11880, 1840, 2790
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342672(n) = lcm(sigma(n), A003961(n));

Formula

a(n) = lcm(A000203(n), A003961(n)).
a(n) = A341529(n) / A342671(n).

A346240 Difference between A341512 and its Möbius transform.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 11, 2, 3, 0, 46, 0, 5, 4, 85, 0, 80, 0, 68, 6, 3, 0, 398, 2, 5, 46, 130, 0, 209, 0, 575, 4, 3, 6, 981, 0, 5, 6, 640, 0, 397, 0, 182, 164, 7, 0, 2830, 4, 150, 4, 280, 0, 1435, 4, 1250, 6, 3, 0, 2586, 0, 7, 292, 3661, 6, 551, 0, 368, 8, 507, 0, 7983, 0, 5, 212, 502, 6, 847, 0, 4700, 788, 3, 0, 5078, 4, 5, 4, 1894
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Programs

Formula

a(n) = -Sum_{d|n, dA008683(n/d) * A341512(d).
a(n) = A341512(n) - A346239(n).

A351252 a(n) = sigma(n) * A276086(n), pointwise product of the sum of divisors function and the primorial base exp-function.

Original entry on oeis.org

2, 9, 24, 63, 108, 60, 80, 225, 390, 810, 1080, 700, 700, 1800, 3600, 6975, 8100, 4875, 5000, 15750, 24000, 40500, 54000, 37500, 38750, 78750, 150000, 315000, 337500, 504, 448, 1323, 2016, 3402, 6048, 3185, 2660, 6300, 11760, 28350, 26460, 16800, 15400, 44100, 81900, 113400, 151200, 108500, 99750, 244125, 378000
Offset: 1

Views

Author

Antti Karttunen, Feb 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Block[{i = 1, m = 1, n = #, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; DivisorSigma[1, #]*m] &, 51] (* Michael De Vlieger, Feb 17 2022, after Jean-François Alcover at A276086 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351252(n) = (sigma(n) * A276086(n));

Formula

a(n) = A000203(n) * A276086(n).

A378659 Positions of records for ratio A003961(n)/sigma(n), where A003961 is fully multiplicative with a(p) = nextprime(p) and sigma is the sum of the divisors function.

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 16, 27, 32, 64, 128, 243, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2024

Keywords

Examples

			  Term k       A003961(k)/A000203(k)    ratio
       1                1/1          =  1
       3                5/4          =  1.25
       4                9/7          =  1.2857143
       7               11/8          =  1.375
       8               27/15         =  1.8
       9               25/13         =  1.9230769
      16               81/31         =  2.6129032
      27              125/40         =  3.125
      32              243/63         =  3.8571429
      64              729/127        =  5.7401575
     128             2187/255        =  8.5764706
     243             3125/364        =  8.5851648
     256             6561/511        =  12.839530
     ...
33554432     847288609443/67108863   =  12625.584
67108864    2541865828329/134217727  =  18938.376
		

Crossrefs

Cf. A001359 (apparently gives the positions of successive minima of the ratio, for n > 2).
Previous Showing 21-26 of 26 results.