cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A349798 Number of weakly alternating ordered prime factorizations of n with at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 5, 1, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence counts permutations of prime factors that are weakly but not strongly alternating. Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			Using prime indices instead of factors, the a(n) ordered prime factorizations for selected n are:
n = 4    12    24     48      90     120     192       240      270
   ------------------------------------------------------------------
    11   112   1112   11112   1223   11132   1111112   111132   12232
         211   1121   11121   1322   11213   1111121   111213   13222
               1211   11211   2213   11312   1111211   111312   21223
               2111   12111   2231   21113   1112111   112131   21322
                      21111   3122   21311   1121111   113121   22132
                              3221   23111   1211111   121113   22213
                                     31112   2111111   121311   22231
                                     31211             131112   22312
                                                       131211   23122
                                                       211131   23221
                                                       213111   31222
                                                       231111   32212
                                                       311121
                                                       312111
		

Crossrefs

This is the weakly but not strictly alternating case of A008480.
Including alternating (in fact, anti-run) permutations gives A349056.
These partitions are counted by A349795, ranked by A350137.
A complementary version is A349796, ranked by A350140.
The version for compositions is A349800, ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A335452 = anti-run ordered prime factorizations.
A344652 = ordered prime factorizations w/o weakly increasing triples.
A345164 = alternating ordered prime factorizations, with twins A344606.
A345194 = alternating patterns, with twins A344605.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349060 = weakly alternating partitions, complement A349061.
A349797 = non-weakly alternating ordered prime factorizations.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Permutations[primeMS[n]],(whkQ[#]||whkQ[-#])&&MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A350138 Number of non-weakly alternating patterns of length n.

Original entry on oeis.org

0, 0, 0, 2, 32, 338, 3560, 40058, 492664, 6647666, 98210192, 1581844994, 27642067000, 521491848218, 10572345303576, 229332715217954, 5301688511602448, 130152723055769810, 3381930236770946120, 92738693031618794378, 2676532576838728227352
Offset: 0

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
Conjecture: The directed cases, which count non-weakly up/down or non-weakly down/up patterns, are both equal to the strong case: A350252.

Examples

			The a(4) = 32 patterns:
  (1,1,2,3)  (2,1,1,2)  (3,1,1,2)  (4,1,2,3)
  (1,2,2,1)  (2,1,1,3)  (3,1,2,3)  (4,2,1,3)
  (1,2,3,1)  (2,1,2,3)  (3,1,2,4)  (4,3,1,2)
  (1,2,3,2)  (2,1,3,4)  (3,2,1,1)  (4,3,2,1)
  (1,2,3,3)  (2,3,2,1)  (3,2,1,2)
  (1,2,3,4)  (2,3,3,1)  (3,2,1,3)
  (1,2,4,3)  (2,3,4,1)  (3,2,1,4)
  (1,3,2,1)  (2,4,3,1)  (3,3,2,1)
  (1,3,3,2)             (3,4,2,1)
  (1,3,4,2)
  (1,4,3,2)
		

Crossrefs

The unordered version is A274230, complement A052955.
The strong case of compositions is A345192, ranked by A345168.
The strict case is A348615, complement A001250.
For compositions we have A349053, complement A349052, ranked by A349057.
The complement is counted by A349058.
The version for partitions is A349061, complement A349060.
The version for permutations of prime indices: A349797, complement A349056.
The version for ordered factorizations is A350139, complement A349059.
The strong case is A350252, complement A345194. Also the directed case?
A003242 = Carlitz compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!whkQ[#]&&!whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([0], vector(n,i,1) + sum(k=1, n, (vector(n,i,k^i) - 2*R(n, k))*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A000670(n) - A349058(n).

Extensions

a(9) onwards from Andrew Howroyd, Jan 13 2024

A350354 Number of up/down (or down/up) patterns of length n.

Original entry on oeis.org

1, 1, 1, 3, 11, 51, 281, 1809, 13293, 109899, 1009343, 10196895, 112375149, 1341625041, 17249416717, 237618939975, 3491542594727, 54510993341523, 901106621474801, 15723571927404189, 288804851413993941, 5569918636750820751, 112537773142244706427
Offset: 0

Views

Author

Gus Wiseman, Jan 16 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A patten is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase.
A pattern is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase. For example, the partition (3,2,2,2,1) has no up/down permutations, even though it does have the anti-run permutation (2,3,2,1,2).
Conjecture: Also the half the number of weakly up/down patterns of length n.
These are the values of the Euler zig-zag polynomials A205497 evaluated at x = 1/2 and normalized by 2^n. - Peter Luschny, Jun 03 2024

Examples

			The a(0) = 1 through a(4) = 11 patterns:
  ()  (1)  (1,2)  (1,2,1)  (1,2,1,2)
                  (1,3,2)  (1,2,1,3)
                  (2,3,1)  (1,3,1,2)
                           (1,3,2,3)
                           (1,3,2,4)
                           (1,4,2,3)
                           (2,3,1,2)
                           (2,3,1,3)
                           (2,3,1,4)
                           (2,4,1,3)
                           (3,4,1,2)
		

Crossrefs

The version for permutations is A000111, undirected A001250.
For compositions we have A025048, down/up A025049, undirected A025047.
This is the up/down (or down/up) case of A345194.
A205497 are the Euler zig-zag polynomials.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns.
A019536 counts necklace patterns.
A226316 counts patterns avoiding (1,2,3), weakly A052709.
A335515 counts patterns matching (1,2,3).
A349058 counts weakly alternating patterns.
A350252 counts non-alternating patterns.
Row sums of A079502.

Programs

  • Maple
    # Using the recurrence by Kyle Petersen from A205497.
    G := proc(n) option remember; local F;
    if n = 0 then 1/(1 - q*x) else F := G(n - 1);
    simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    A350354 := n -> 2^n*subs({p = 1, q = 1, x = 1/2}, G(n)*(1 - x)^(n + 1)):
    seq(A350354(n), n = 0..22);  # Peter Luschny, Jun 03 2024
  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]
    				
  • PARI
    F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)}
    R(n,k) = {Vec(if(k==1, 0, F(k-2,-x)/F(k-1,x)-1) + x + O(x*x^n))}
    seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022

Formula

a(n > 2) = A344605(n)/2.
a(n > 1) = A345194(n)/2.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 04 2022

A350250 Numbers k such that the k-th composition in standard order is a non-alternating permutation of an initial interval of positive integers.

Original entry on oeis.org

37, 52, 549, 550, 556, 564, 581, 600, 616, 649, 657, 712, 786, 802, 836, 840, 16933, 16934, 16937, 16940, 16946, 16948, 16965, 16977, 16984, 16994, 17000, 17033, 17041, 17092, 17096, 17170, 17186, 17220, 17224, 17445, 17446, 17452, 17460, 17541, 17569, 17584
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding permutations begin:
     37: (3,2,1)
     52: (1,2,3)
    549: (4,3,2,1)
    550: (4,3,1,2)
    556: (4,2,1,3)
    564: (4,1,2,3)
    581: (3,4,2,1)
    600: (3,2,1,4)
    616: (3,1,2,4)
    649: (2,4,3,1)
    657: (2,3,4,1)
    712: (2,1,3,4)
    786: (1,4,3,2)
    802: (1,3,4,2)
    836: (1,2,4,3)
    840: (1,2,3,4)
  16933: (5,4,3,2,1)
		

Crossrefs

This is the non-alternating case of A333218.
This is the restriction of A345168 to permutations, complement A345167.
These partitions are counted by A348615, complement A001250.
A003242 counts anti-run compositions, patterns A005649.
A025047 counts alternating compositions, directed A025048/A025049.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns, complement A350252.
Statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994, strict A333256.
- Weakly increasing compositions (multisets) are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Anti-run compositions are A333489, complement A348612.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],(Sort[stc[#]]==Range[Length[stc[#]]]&&!wigQ[stc[#]])&]
Previous Showing 31-34 of 34 results.