A345961
Numbers whose prime indices have reverse-alternating sum 2.
Original entry on oeis.org
3, 10, 12, 21, 27, 30, 40, 48, 55, 70, 75, 84, 90, 91, 108, 120, 147, 154, 160, 187, 189, 192, 210, 220, 243, 247, 250, 270, 280, 286, 300, 336, 360, 363, 364, 391, 432, 442, 462, 480, 490, 495, 507, 525, 551, 588, 616, 630, 640, 646, 675, 713, 748, 750, 756
Offset: 1
The initial terms and their prime indices:
3: {2}
10: {1,3}
12: {1,1,2}
21: {2,4}
27: {2,2,2}
30: {1,2,3}
40: {1,1,1,3}
48: {1,1,1,1,2}
55: {3,5}
70: {1,3,4}
75: {2,3,3}
84: {1,1,2,4}
90: {1,2,2,3}
91: {4,6}
108: {1,1,2,2,2}
120: {1,1,1,2,3}
Below we use k to indicate reverse-alternating sum.
These multisets are counted by
A000097.
These are the positions of 2's in
A344616.
A000070 counts partitions with alternating sum 1.
A027187 counts partitions with reverse-alternating sum <= 0.
A088218 also counts compositions with alternating sum 0, ranked by
A344619.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A316524 gives the alternating sum of prime indices.
A344606 counts alternating permutations of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A000984,
A001791,
A025047,
A027193,
A239830,
A341446,
A344611,
A344650,
A344651,
A344743,
A345910,
A345911,
A345918.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[100],sats[primeMS[#]]==2&]
A343942
Number of even-length strict integer partitions of 2n+1.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 52, 71, 96, 128, 170, 224, 292, 380, 491, 630, 805, 1024, 1295, 1632, 2049, 2560, 3189, 3959, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29249, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937, 172928
Offset: 0
The a(1) = 1 through a(7) = 13 strict partitions:
(2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7)
(4,1) (5,2) (6,3) (7,4) (8,5) (9,6)
(6,1) (7,2) (8,3) (9,4) (10,5)
(8,1) (9,2) (10,3) (11,4)
(10,1) (11,2) (12,3)
(5,3,2,1) (12,1) (13,2)
(5,4,3,1) (14,1)
(6,4,2,1) (6,4,3,2)
(7,3,2,1) (6,5,3,1)
(7,4,3,1)
(7,5,2,1)
(8,4,2,1)
(9,3,2,1)
The opposite type of strict partition (odd length and even sum) is
A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A000070,
A000097,
A030229,
A035294,
A067659,
A236559,
A338907,
A343941,
A344649,
A344654,
A344739.
-
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,15}]
A346634
Number of strict odd-length integer partitions of 2n + 1.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0
The a(0) = 1 through a(7) = 14 partitions:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(5,3,1) (6,3,2) (6,5,2) (7,5,3)
(6,2,1) (6,4,1) (7,4,2) (7,6,2)
(7,3,1) (7,5,1) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(9,3,1) (9,4,2)
(10,2,1) (9,5,1)
(10,3,2)
(10,4,1)
(11,3,1)
(12,2,1)
(5,4,3,2,1)
The even version is the even bisection of
A067661.
The case of all odd parts is counted by
A069911 (non-strict:
A078408).
A340385 counts partitions with odd length and maximum, ranked by
A340386.
Other cases of odd length:
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(2*n+1$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Aug 05 2021
-
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]
Comments