cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A349798 Number of weakly alternating ordered prime factorizations of n with at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 5, 1, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence counts permutations of prime factors that are weakly but not strongly alternating. Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			Using prime indices instead of factors, the a(n) ordered prime factorizations for selected n are:
n = 4    12    24     48      90     120     192       240      270
   ------------------------------------------------------------------
    11   112   1112   11112   1223   11132   1111112   111132   12232
         211   1121   11121   1322   11213   1111121   111213   13222
               1211   11211   2213   11312   1111211   111312   21223
               2111   12111   2231   21113   1112111   112131   21322
                      21111   3122   21311   1121111   113121   22132
                              3221   23111   1211111   121113   22213
                                     31112   2111111   121311   22231
                                     31211             131112   22312
                                                       131211   23122
                                                       211131   23221
                                                       213111   31222
                                                       231111   32212
                                                       311121
                                                       312111
		

Crossrefs

This is the weakly but not strictly alternating case of A008480.
Including alternating (in fact, anti-run) permutations gives A349056.
These partitions are counted by A349795, ranked by A350137.
A complementary version is A349796, ranked by A350140.
The version for compositions is A349800, ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A335452 = anti-run ordered prime factorizations.
A344652 = ordered prime factorizations w/o weakly increasing triples.
A345164 = alternating ordered prime factorizations, with twins A344606.
A345194 = alternating patterns, with twins A344605.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349060 = weakly alternating partitions, complement A349061.
A349797 = non-weakly alternating ordered prime factorizations.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Permutations[primeMS[n]],(whkQ[#]||whkQ[-#])&&MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A349799 Numbers k such that the k-th composition in standard order is weakly alternating but has at least two adjacent equal parts.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 79, 83, 84, 85, 86, 87, 90, 91, 94, 95, 99, 100, 103, 106, 111, 112, 113, 114, 115, 118, 119, 120, 121, 122, 123, 124, 125
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
This sequence ranks compositions that are weakly but not strongly alternating.

Examples

			The terms and corresponding compositions begin:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  23: (2,1,1,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

Partitions of this type are counted by A349795, ranked by A350137.
Permutations of prime indices of this type are counted by A349798.
These compositions are counted by A349800.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345164 = alternating permutations of prime indices, with twins A344606.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345166 = separable partitions with no alternations, ranked by A345173.
A345192 = non-alternating compositions, ranked by A345168.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349056 = weak alternations of prime indices, complement A349797.
A349060 = weak alternations of partitions, complement A349061.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[0,100],(whkQ[stc[#]]||whkQ[-stc[#]])&&MatchQ[stc[#],{_,x_,x_,_}]&]

Formula

A349801 Number of integer partitions of n into three or more parts or into two equal parts.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 11, 18, 25, 37, 50, 71, 94, 128, 168, 223, 288, 376, 480, 617, 781, 991, 1243, 1563, 1945, 2423, 2996, 3704, 4550, 5589, 6826, 8333, 10126, 12293, 14865, 17959, 21618, 25996, 31165, 37318, 44562, 53153, 63239, 75153, 89111, 105535, 124730
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2021

Keywords

Comments

This sequence arose as the following degenerate case. If we define a sequence to be alternating if it is alternately strictly increasing and strictly decreasing, starting with either, then a(n) is the number of non-alternating integer partitions of n. Under this interpretation:
- The non-strict case is A047967, weak A349796, weak complement A349795.
- The complement is counted by A065033(n) = ceiling(n/2) for n > 0.
- These partitions are ranked by A289553 \ {1}, complement A167171 \/ {1}.
- The version for compositions is A345192, ranked by A345168.
- The weak version for compositions is A349053, ranked by A349057.
- The weak version is A349061, complement A349060, ranked by A349794.

Examples

			The a(2) = 1 through a(7) = 11 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)
               (211)   (311)    (222)     (331)
               (1111)  (2111)   (321)     (421)
                       (11111)  (411)     (511)
                                (2211)    (2221)
                                (3111)    (3211)
                                (21111)   (4111)
                                (111111)  (22111)
                                          (31111)
                                          (211111)
                                          (1111111)
		

Crossrefs

A000041 counts partitions, ordered A011782.
A001250 counts alternating permutations, complement A348615.
A004250 counts partitions into three or more parts, strict A347548.
A025047/A025048/A025049 count alternating compositions, ranked by A345167.
A096441 counts weakly alternating 0-appended partitions.
A345165 counts partitions w/ no alternating permutation, complement A345170.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,x_}|{,,__}]&]],{n,0,10}]

Formula

a(1) = 0; a(n > 0) = A000041(n) - ceiling(n/2).
Previous Showing 21-23 of 23 results.