A349153
Numbers k such that the k-th composition in standard order has sum equal to twice its reverse-alternating sum.
Original entry on oeis.org
0, 11, 12, 14, 133, 138, 143, 148, 155, 158, 160, 168, 179, 182, 188, 195, 198, 204, 208, 216, 227, 230, 236, 240, 248, 2057, 2066, 2071, 2077, 2084, 2091, 2094, 2101, 2106, 2111, 2120, 2131, 2134, 2140, 2149, 2154, 2159, 2164, 2171, 2174, 2192, 2211, 2214
Offset: 1
The terms and corresponding compositions begin:
0: ()
11: (2,1,1)
12: (1,3)
14: (1,1,2)
133: (5,2,1)
138: (4,2,2)
143: (4,1,1,1,1)
148: (3,2,3)
155: (3,1,2,1,1)
158: (3,1,1,1,2)
160: (2,6)
168: (2,2,4)
179: (2,1,3,1,1)
182: (2,1,2,1,2)
188: (2,1,1,1,3)
These compositions are counted by
A262977 up to 0's.
The unreversed negative version is
A349154.
A non-reverse unordered version is
A349159, counted by
A000712 up to 0's.
A003242 counts Carlitz compositions.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >=0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
Cf.
A000070,
A000346,
A001250,
A001700,
A008549,
A027306,
A058622,
A088218,
A114121,
A120452,
A294175.
Statistics of standard compositions:
- The compositions themselves are the rows of
A066099.
- Heinz number is given by
A333219.
Classes of standard compositions:
-
stc[n_]:=Differences[ Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
Select[Range[0,1000],Total[stc[#]]==2*sats[stc[#]]&]
A351009
Numbers k such that the k-th composition in standard order is a concatenation of distinct twins (x,x).
Original entry on oeis.org
0, 3, 10, 36, 43, 58, 136, 147, 228, 528, 547, 586, 676, 904, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 3600, 3658, 3748, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 10768, 10787, 11144, 14368, 14474, 14984, 32896, 33027, 33290, 33828, 33835, 33850, 34963
Offset: 1
The terms together with their binary expansions and standard compositions begin:
0: 0 ()
3: 11 (1,1)
10: 1010 (2,2)
36: 100100 (3,3)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
136: 10001000 (4,4)
147: 10010011 (3,3,1,1)
228: 11100100 (1,1,3,3)
528: 1000010000 (5,5)
547: 1000100011 (4,4,1,1)
586: 1001001010 (3,3,2,2)
676: 1010100100 (2,2,3,3)
904: 1110001000 (1,1,4,4)
The case of twins (binary weight 2) is
A000120.
All terms are evil numbers
A001969.
The version for Heinz numbers of partitions is
A062503, counted by
A035457.
These compositions are counted by
A032020 interspersed with 0's.
Taking singles instead of twins gives
A349051.
A085207 represents concatenation using standard compositions.
Cf.
A003242,
A027383,
A035363,
A088218,
A106356,
A122134,
A238279,
A344604,
A349054,
A351005,
A351007.
Selected statistics of standard compositions:
- Number of distinct parts is
A334028.
Selected classes of standard compositions:
- Constant compositions are
A272919.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]], 1],0]]//Reverse;
Select[Range[0,1000], UnsameQ@@Split[stc[#]]&&And@@(#==2&)/@Length/@Split[stc[#]]&]
A374254
Numbers k such that the k-th composition in standard order is an anti-run and matches the patterns (1,2,1) or (2,1,2).
Original entry on oeis.org
13, 22, 25, 45, 49, 54, 76, 77, 82, 89, 97, 101, 102, 105, 108, 109, 141, 148, 150, 153, 162, 165, 166, 177, 178, 180, 182, 193, 197, 198, 204, 205, 209, 210, 216, 217, 269, 278, 280, 281, 297, 300, 301, 305, 306, 308, 310, 322, 325, 326, 332, 333, 353, 354
Offset: 1
The terms together with their standard compositions begin:
13: (1,2,1)
22: (2,1,2)
25: (1,3,1)
45: (2,1,2,1)
49: (1,4,1)
54: (1,2,1,2)
76: (3,1,3)
77: (3,1,2,1)
82: (2,3,2)
89: (2,1,3,1)
97: (1,5,1)
101: (1,3,2,1)
102: (1,3,1,2)
105: (1,2,3,1)
108: (1,2,1,3)
109: (1,2,1,2,1)
141: (4,1,2,1)
148: (3,2,3)
150: (3,2,1,2)
153: (3,1,3,1)
Compositions of this type are counted by
A285981.
Permutations of prime indices of this type are counted by
A335460.
A066099 lists compositions in standard order.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335456 counts patterns matched by compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
A335465 counts minimal patterns avoided by a standard composition.
A373948 encodes run-compression using compositions in standard order.
A373953 gives run-compressed sum of standard compositions, excess
A373954.
Cf.
A106356,
A124762,
A238130,
A238279,
A261982,
A333175,
A333382,
A333627,
A335463,
A335524,
A335525.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],Length[Split[stc[#]]] == Length[stc[#]]&&!UnsameQ@@First/@Split[stc[#]]&]
A350250
Numbers k such that the k-th composition in standard order is a non-alternating permutation of an initial interval of positive integers.
Original entry on oeis.org
37, 52, 549, 550, 556, 564, 581, 600, 616, 649, 657, 712, 786, 802, 836, 840, 16933, 16934, 16937, 16940, 16946, 16948, 16965, 16977, 16984, 16994, 17000, 17033, 17041, 17092, 17096, 17170, 17186, 17220, 17224, 17445, 17446, 17452, 17460, 17541, 17569, 17584
Offset: 1
The terms and corresponding permutations begin:
37: (3,2,1)
52: (1,2,3)
549: (4,3,2,1)
550: (4,3,1,2)
556: (4,2,1,3)
564: (4,1,2,3)
581: (3,4,2,1)
600: (3,2,1,4)
616: (3,1,2,4)
649: (2,4,3,1)
657: (2,3,4,1)
712: (2,1,3,4)
786: (1,4,3,2)
802: (1,3,4,2)
836: (1,2,4,3)
840: (1,2,3,4)
16933: (5,4,3,2,1)
This is the non-alternating case of
A333218.
This is the restriction of
A345168 to permutations, complement
A345167.
A345192 counts non-alternating compositions.
Statistics of standard compositions:
- Number of maximal anti-runs is
A333381.
- Number of distinct parts is
A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are
A114994, strict
A333256.
- Weakly increasing compositions (multisets) are
A225620, strict
A333255.
- Constant compositions are
A272919.
Cf.
A008965,
A059893,
A164894,
A246534,
A333217,
A344605,
A345162,
A350251,
A345163,
A345171,
A345172,
A348613.
-
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Select[Range[0,1000],(Sort[stc[#]]==Range[Length[stc[#]]]&&!wigQ[stc[#]])&]
A350353
Numbers whose multiset of prime factors has a permutation that is not weakly alternating.
Original entry on oeis.org
30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1
The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin:
30 : (1,2,3) 100 : (1,3,3,1)
36 : (1,2,2,1) 102 : (1,2,7)
42 : (1,2,4) 105 : (2,3,4)
60 : (1,1,2,3) 108 : (1,2,2,1,2)
66 : (1,2,5) 110 : (1,3,5)
70 : (1,3,4) 114 : (1,2,8)
72 : (1,1,2,2,1) 120 : (1,1,1,2,3)
78 : (1,2,6) 126 : (1,2,4,2)
84 : (1,1,2,4) 130 : (1,3,6)
90 : (1,2,3,2) 132 : (1,1,2,5)
These are the positions of nonzero terms in
A349797.
Below, WA = "weakly alternating":
- WA ordered factorizations are counted by
A349059, complement
A350139.
A008480 counts permutations of prime factors.
A335452 counts anti-run permutations of prime factors, complement
A336107.
A345164 = alternating permutations of prime factors, complement
A350251.
Cf.
A003242,
A335433,
A335448,
A344652,
A344653,
A345171,
A345172,
A345173,
A348379,
A348613,
A349798,
A350252,
A349800.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Comments