cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A354187 Sum of A348717 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 8, 0, 8, 4, 8, 0, 16, 0, 8, 8, 16, 0, 16, 0, 32, 8, 8, 0, 24, 4, 8, 8, 48, 0, 40, 0, 32, 8, 8, 8, 44, 0, 8, 8, 40, 0, 72, 0, 80, 16, 8, 0, 48, 4, 32, 8, 96, 0, 48, 8, 56, 8, 8, 0, 56, 0, 8, 32, 64, 8, 120, 0, 128, 8, 72, 0, 64, 0, 8, 16, 144, 8, 168, 0, 80, 16, 8, 0, 72, 8, 8, 8, 88, 0, 80, 8, 176
Offset: 1

Views

Author

Antti Karttunen, May 19 2022

Keywords

Comments

The first negative term is a(520) = -8.

Crossrefs

Programs

  • PARI
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    memoA354186 = Map();
    A354186(n) = if(1==n,1,my(v); if(mapisdefined(memoA354186,n,&v), v, v = -sumdiv(n,d,if(dA348717(n/d)*A354186(d),0)); mapput(memoA354186,n,v); (v)));
    A354187(n) = (A348717(n)+A354186(n));

Formula

a(n) = A348717(n) + A354186(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A348717(d) * A354186(n/d).

A364959 Odd numbers k such that A348717(k) = A348717(A005940(k)).

Original entry on oeis.org

1, 3, 5, 17, 25, 45, 49, 133, 257, 65537
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2023

Keywords

Comments

In contrast to condition A348717(n) = A348717(A163511(n)), which seems to admit only Mersenne primes for odd n (see A364297), here we also have some extra terms in addition to Fermat primes, A019434.

Examples

			For n = 17, A005940(17) = 11, and A348717(11) = A348717(17) = 2, therefore 17 is included in this sequence. Moreover, any prime in this sequence must be one of the Fermat primes (A019434), because the primes are located at positions 2^k + 1 in the offset-1 variant of Doudna-tree, A005940.
For n = 25 and n = 49, A005940(25) = 49 and A005940(49) = 121, which are all squares of primes, and thus have the same A348717-value (4), therefore both 25 and 49 are terms.
For n = 45 = 3^2 * 5, A005940(45) = 175 = 5^2 * 7 [= A003961(45)], with A348717(45) = A348717(175) = 12, therefore 45 is included as a term. (See also examples in A364961).
For n = 133 = 7*19, A005940(133) = 85 = 5*17 [= A064989(133)], with A348717(133) = A348717(85) = 22, therefore 133 is included as a term. (See also example in A364962.)
		

Crossrefs

Cf. A005940, A019434 (subsequence), A348717, A364961, A364962.
Cf. also A364297.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    isA364959(n) = ((n%2)&&(A348717(n)==A348717(A005940(n))));

A354185 Möbius transform of A348717.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 7, 1, 4, 1, 11, 3, 8, 1, 10, 1, 8, 7, 19, 1, 8, 2, 23, 4, 12, 1, 13, 1, 16, 11, 31, 3, 12, 1, 35, 19, 16, 1, 17, 1, 20, 4, 43, 1, 16, 2, 38, 23, 24, 1, 32, 7, 24, 31, 55, 1, 16, 1, 59, 8, 32, 11, 29, 1, 32, 35, 45, 1, 24, 1, 71, 10, 36, 3, 29, 1, 32, 8, 79, 1, 24, 19, 83, 43, 40, 1, 44, 7
Offset: 1

Views

Author

Antti Karttunen, May 19 2022

Keywords

Comments

Question: Are all terms positive?

Crossrefs

Cf. also A322994.

Programs

  • PARI
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    A354185(n) = sumdiv(n,d,moebius(n/d)*A348717(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A348717(d).

A364950 Lexicographically earliest infinite sequence such that a(i) = a(j) => A025480(i) = A025480(j) and A348717(i) = A348717(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 2, 5, 3, 6, 4, 7, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 7, 17, 2, 18, 19, 20, 21, 22, 23, 24, 3, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 2, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 23, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 13, 62, 63, 64, 14, 65, 66, 67, 15, 68, 69, 70, 34, 71
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A025480(n), A348717(n)], or equally, of the ordered pair [A003602(1+n), A246277(n)].
For all i, j:
a(i) = a(j) => A364949(i) = A364949(j),
a(i) = a(j) => A364951(i) = A364951(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A025480(n) = (n>>valuation(n*2+2, 2));
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    Aux364950(n) = [A025480(n), A348717(n)];
    v364950 = rgs_transform(vector(up_to, n, Aux364950(n)));
    A364950(n) = v364950[n];

A374477 Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(i) = A348717(j) and A374469(i) = A374469(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 2, 5, 2, 6, 7, 8, 2, 9, 2, 10, 11, 12, 2, 13, 2, 14, 15, 16, 2, 17, 18, 19, 6, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 16, 28, 2, 29, 2, 30, 9, 31, 2, 32, 4, 33, 19, 34, 2, 35, 36, 37, 38, 39, 2, 40, 2, 41, 14, 42, 10, 43, 2, 44, 45, 46, 2, 47, 2, 48, 49, 50, 51, 52, 2, 53, 54, 55, 2, 56, 57, 58, 31, 59, 2, 60, 8, 61, 62, 63, 19, 64, 2, 65, 20, 66
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A348717(n), A374469(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    A000265(n) = (n>>valuation(n,2));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n));
    A374469(n) = A000265(A364255(n));
    Aux374477(n) = [A348717(n), A374469(n)];
    v374477 = rgs_transform(vector(up_to, n, Aux374477(n)));
    A374477(n) = v374477[n];

A374478 Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(i) = A348717(j) and A364255(i) = A364255(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 8, 9, 5, 10, 5, 11, 12, 13, 5, 14, 5, 15, 16, 17, 5, 18, 19, 20, 21, 22, 5, 23, 5, 24, 25, 26, 27, 28, 5, 29, 30, 31, 5, 32, 5, 33, 34, 35, 5, 36, 37, 38, 39, 40, 5, 41, 42, 43, 44, 45, 5, 46, 5, 47, 48, 49, 50, 51, 5, 52, 53, 54, 5, 55, 5, 56, 57, 58, 59, 60, 5, 61, 62, 63, 5, 64, 65, 66, 67, 68, 5, 69, 70, 71, 72, 73, 39, 74, 5, 75, 76, 77, 5
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A348717(n), A364255(n)].
For all i, j >= 1:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A305891(i) = A305891(j),
a(i) = a(j) => A374477(i) = A374477(j).

Crossrefs

Differs from A374040 first at n=77, where a(77) = 59, while A374040(77) = 50.
Differs from A305900 first at n=95, where a(95) = 39, while A305900(95) = 74.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n));
    Aux374478(n) = [A348717(n), A364255(n)];
    v374478 = rgs_transform(vector(up_to, n, Aux374478(n)));
    A374478(n) = v374478[n];

A364131 Numbers k for which A348717(k) is a multiple of A348717(sigma(k)).

Original entry on oeis.org

1, 2, 4, 9, 16, 25, 64, 81, 289, 324, 400, 484, 729, 1681, 2401, 3481, 4096, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 39204, 65536, 83521, 85849, 146689, 262144, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2023

Keywords

Comments

Conjecture: All terms apart from a(2) = 2 are squares.

Crossrefs

Cf. A000203, A008848, A023194 (subsequence), A348717, A350072.

Programs

  • PARI
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    isA364131(n) = !(A348717(n)%A348717(sigma(n)));

A246277 Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

If n >= 2, n occurs in column a(n) of A246278.
By convention, a(1) = 0 because 1 does not occur in A246278.

Crossrefs

Terms of A348717 halved. A305897 is the restricted growth sequence transform.
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A078898 (has the same role with array A083221 as this sequence has with A246278).
This sequence is also used in the definition of the following permutations: A246274, A246276, A246675, A246677, A246683, A249815, A249817 (A249818), A249823, A249825, A250244, A250245, A250247, A250249.
Also in the definition of arrays A249821, A251721, A251722.
Sum of prime indices of a(n) is A359358(n) + A001222(n) - 1, cf. A326844.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    a246277[n_Integer] := Module[{f, p, a064989, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 1,
        True, NextPrime[x, -1]];
      a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
      a[1] = 0;
      a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2];
    a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
    
  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; two different variants, the second one employing memoizing definec-macro)
    (define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n))))))
    (definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
    

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)) = a(A064216(n+1)). [Cf. the formula for A252463.]
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
For all n >= 2, a(n) = A078898(A249817(n)).
For semiprimes n = p_i * p_j, j >= i, a(n) = A000040(1+A243055(n)) = p_{1+j-i}.
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_i-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A356867 For n >= 1, write n = 3^m + k, where m >= 0 is the greatest power of 3 <= n, and k is in the range 0 <= k < 3^(m+1) - 3^m, then for n such that k=0, a(n)=n, and for n such that k > 0, a(n) is the smallest prime multiple p*a(k), p != 3, that is not already a term.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 10, 8, 9, 7, 14, 15, 25, 20, 12, 50, 16, 18, 35, 28, 30, 125, 40, 24, 100, 32, 27, 11, 22, 21, 55, 44, 42, 70, 56, 45, 49, 98, 75, 175, 140, 60, 250, 80, 36, 245, 196, 150, 625, 200, 48, 500, 64, 54, 77, 110, 105, 275, 88, 84, 350, 112, 90, 343
Offset: 1

Views

Author

David James Sycamore, Sep 01 2022

Keywords

Comments

Any prime p may be used to generate a sequence D(p) of this kind. The present sequence is D(3), and D(2) is the Doudna sequence, A005940.
Conjectured to be a permutation of the positive integers in which the primes appear in order.
From Antti Karttunen, Sep 16 2023: (Start)
The conjecture is true: Sequence is a permutation of natural numbers. By definition it is injective, and the surjectivity is guaranteed by the fact that there are infinitely many such n > k encountered by the greedy algorithm that a(n) will be a multiple of a(k), and "the smallest prime multiple" condition guarantees that all multiples of a(k) will eventually appear. That the primes and A100484 appear in order follows from the formulas a(3^m + 1) = prime(m+2), and a(3^m + 2) = 2*prime(m+2).
If the base-3 representation of n-1 has the base-3 representation of k-1 as its suffix, then a(n) is a multiple of a(k). For example, A007089(16-1) = 120, and A007089(43-1) = 1120, thus the former is the suffix of the latter, and a(16) = 50 indeed divides a(43) = 250.
(End)

Examples

			n=1=3^0+0 so a(1)=1. n=2=3^0+1 so k=1 and a(2)=2. Similarly a(3)=3 and a(9)=9.
n=10=3^2+1, therefore k=1 and a(1)=1 so a(10)=1*7=7 (since 2 and 5 have already occurred).
		

Crossrefs

Cf. A007089, A007949, A011655, A048473, A100484, A053735, A364958 (fixed points), A365390 (inverse permutation), A365424, A365459, A365462 [= a(n)-n], A365463 [= gcd(a(n),n)], A365464, A365465, A365717 [= A348717(a(1+n))], A365719 [= A046523(a(1+n))], A365721 [= omega(a(1+n))], A365722 [= bigomega(a(1+n))].
Cf. also A005940, A364611, A364628 for variants D(2), D(5) and D(7).

Programs

Formula

a(3^m + 1) = prime(m+2) for m >= 1.
Conjectures from Jianing Song, Nov 23 2022: (Start)
(1) a(3^m+2) = 2*prime(m+2) for m >= 2. - [The conjecture is true because a(2) = 2 and 3^m + 2 < 3^(1+m) + (3^m) + 1 for all m - Antti Karttunen, Sep 16 2023]
(2) For n > m >= 1, a(3^n+3^m+1) = prime(m+2)^2 for n = m+1; prime(n+2)*prime(m+2)^2 for n >= m+2.
(3) For n > m >= 1, a(3^n+3^m+2) = 4*prime(n+2) for n >= 3, m = 1; 2*prime(m+2)^2 for n = m+1, m >= 2; 2*prime(m+2)*prime(m+3) for n = m+2, m >= 2; 2*prime(n+2)*prime(m+2)^2 for n >= m+3, m >= 2. (End)
From Antti Karttunen, Sep 17 2023: (Start)
If A053735(n) = 1, then a(n) = n, otherwise a(n) = A365424(n) * a(A365459(n)).
For all n >= 1, A007949(a(n)) = A007949(n) and a(3*n) = 3*a(n).
For n >= 1, a(3^n - 1) = 2^(2n - 1), a(A048473(n)) = 2^(2*(n-1)).
These are conjectures so far:
For n >= 1, a(3^n - 2) = 10^(n-1).
For n >= 2, a(3^n - 3) = A002023(n-2) = 6*4^(n-2).
(End)

Extensions

More terms from Michael De Vlieger, Sep 01 2022
Previous Showing 11-20 of 68 results. Next