cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A349628 Denominators of the Möbius transform of ratio A003961(n)/sigma(n).

Original entry on oeis.org

1, 1, 4, 7, 6, 1, 8, 35, 52, 1, 12, 14, 14, 1, 24, 155, 18, 1, 20, 21, 32, 1, 24, 70, 186, 1, 104, 28, 30, 1, 32, 217, 48, 1, 16, 26, 38, 1, 56, 35, 42, 1, 44, 42, 312, 1, 48, 310, 456, 1, 72, 49, 54, 1, 72, 140, 80, 1, 60, 84, 62, 1, 416, 889, 28, 1, 68, 63, 96, 1, 72, 26, 74, 1, 744, 70, 32, 1, 80, 155, 968, 1, 84
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2021

Keywords

Comments

Because the ratio A003961(n)/A000203(n) is multiplicative, so is also its Möbius transform. This sequence gives the denominator of that ratio when presented in its lowest terms.

Crossrefs

Cf. A349627 (numerators).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e*(p - 1)/(p^(e + 1) - 1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Denominator @ DivisorSum[n, s[#] * MoebiusMu[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A349628(n) = denominator(sumdiv(n,d,moebius(n/d)*(A003961(d)/sigma(d))));

A350072 a(n) = sigma(n^2) / gcd(sigma(n^2), A003961(n^2)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 7, 13, 31, 31, 91, 57, 127, 121, 31, 133, 403, 183, 133, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 427, 1093, 589, 871, 403, 993, 2047, 133, 2149, 1767, 3751, 1407, 889, 2379, 3937, 1723, 1729, 1893, 4123, 3751, 3871, 2257, 6643, 2801, 781, 3991, 1891, 2863, 7651, 589, 2413, 4953, 6097, 3541, 12493
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2021

Keywords

Comments

Conjecture: There are no 1's after the initial term. Remark: If there were some k = x^2 > 1, for which a(x) = 1, then sigma(k) would be a divisor of A003961(k). In other words, d = A350073(k) = A064989(sigma(k)) would be a divisor of k. Then, if that divisor were also a unitary divisor [with gcd(d,k/d) = 1], it would need to satisfy the equation sigma(k) = sigma(d) * sigma(k/d) = sigma(A064989(sigma(k))) * sigma(k/A064989(sigma(k))), because sigma is a multiplicative function. (Minor correction by Antti Karttunen, Jul 11 2023)
Note that if d = A064989(sigma(k)) were a unitary divisor of a square k, then sigma(k) would also be a square, the cases which are quite rare (see A008848 and A336547). Also compare to A349756. - Antti Karttunen, Jul 24 2022

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^(2*e); a[1] = 1; a[n_] := (s = Times @@ f1 @@@ (f = FactorInteger[n])) / GCD[s, Times @@ f2 @@@ f]; Array[a, 60] (* Amiram Eldar, Dec 12 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };
    A350072(n) = A349162(n^2);

Formula

a(n) = A349162(n^2).
a(n) = A065764(n) / A350071(n).

A349756 Numbers k such that the odd part of sigma(k) is equal to gcd(sigma(k), A003961(k)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 6, 7, 14, 20, 21, 24, 27, 31, 42, 54, 57, 60, 62, 93, 114, 120, 127, 140, 160, 168, 186, 189, 216, 217, 220, 237, 254, 264, 301, 378, 381, 399, 408, 420, 434, 460, 474, 480, 513, 540, 552, 602, 620, 651, 660, 744, 762, 792, 798, 837, 840, 889, 903, 940, 1026, 1080, 1120, 1128, 1140, 1302, 1320, 1380, 1392, 1512
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2021

Keywords

Comments

Numbers k for which A161942(k) = A342671(k).
From Antti Karttunen, Jul 23 2022: (Start)
Numbers k such that k is a multiple of A350073(k).
For any square s in this sequence, A349162(s) = 1, i.e. sigma(s) divides A003961(s), and also A286385(s). Question: Is 1 the only square in this sequence? (see the conjecture in A350072).
If both x and y are terms and gcd(x, y) = 1, then x*y is also present.
After 2, the only primes present are Mersenne primes, A000668.
(End)

Crossrefs

Positions of 1's in A348992.
Positions where the powers of 2 (A000079) occur in A349162.
Cf. A000203, A003961, A161942, A286385, A342671, A350072, A350073, A355946 (characteristic function).
Cf. A000668, A046528 (subsequences).
Cf. also A348943.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; oddpart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := oddpart[(sigma = DivisorSigma[1, n])] == GCD[sigma, s[n]]; Select[Range[1500], q] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A355946(n) = { my(s=sigma(n)); !(A003961(n)%((s>>=valuation(s,2)))); };
    isA349756(n) = A355946(n);

A354827 Numerators of Dirichlet inverse of fraction A003961(n) / sigma(n).

Original entry on oeis.org

1, -1, -5, -2, -7, 5, -11, -8, -75, 7, -13, 5, -17, 11, 35, -1648, -19, 75, -23, 1, 55, 13, -29, 2, -245, 17, -225, 11, -31, -35, -37, -1664, 65, 19, 77, 75, -41, 23, 85, 4, -43, -55, -47, 13, 175, 29, -53, 412, -847, 245, 95, 17, -59, 225, 91, 11, 23, 31, -61, -5, -67, 37, 825, -7662464, 17, -65, -71, 19, 145, -77
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Comments

Because the ratio A003961(n) / A000203(n) is multiplicative, so is also its Dirichlet inverse (which also is a sequence of rational numbers). This sequence gives the numerators when presented in its lowest terms, while A354828 gives the denominators. See the examples.

Examples

			The ratio a(n)/A354828(n) for n = 1..21: 1, -1, -5/4, -2/7, -7/6, 5/4, -11/8, -8/35, -75/208, 7/6, -13/12, 5/14, -17/14, 11/8, 35/24, -1648/7595, -19/18, 75/208, -23/20, 1/3, 55/32.
		

Crossrefs

Cf. A354828 (denominators).
Cf. also A349627, A354365.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA354827(n) = (A003961(n)/sigma(n));
    vDirInv = DirInverseCorrect(vector(up_to,n,AuxA354827(n)));
    A354827(n) = numerator(vDirInv[n]);
    A354828(n) = denominator(vDirInv[n]);

A355934 a(n) = sigma(n) / gcd(sigma(n), sigma(A003961(n))), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 2, 7, 3, 1, 2, 3, 13, 9, 6, 14, 7, 1, 1, 31, 9, 39, 5, 21, 4, 9, 4, 1, 31, 7, 10, 14, 15, 3, 16, 9, 4, 27, 1, 7, 19, 5, 14, 9, 21, 1, 11, 6, 39, 3, 8, 62, 3, 31, 3, 49, 9, 5, 9, 1, 5, 45, 30, 7, 31, 12, 26, 127, 7, 3, 17, 63, 8, 3, 36, 39, 37, 19, 62, 35, 4, 7, 20, 93, 11, 63, 14, 28, 27, 11, 5, 9, 45, 117
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Comments

Denominator of ratio A003973(n) / A000203(n). See comments in A355933.

Crossrefs

Cf. A000203, A003961, A003973, A355932, A355933 (numerators), A355940, A355941 (positions of 1's).
Cf. also A336849, A349162.

Programs

  • Mathematica
    f[p_, e_] := ((q = NextPrime[p])^(e + 1) - 1)/(q - 1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n] / DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A355934(n) = { my(u=sigma(n)); (u/gcd(A003973(n), u)); };

Formula

a(n) = A000203(n) / A355932(n) = A000203(n) / gcd(A000203(n), A003973(n)).

A351544 a(n) is the largest unitary divisor of sigma(n) such that its every prime factor also divides A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 9, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 9, 1, 15, 1, 3, 5, 1, 1, 9, 1, 9, 1, 27, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 9, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 9, 1, 21, 1, 3, 1, 1, 7, 9, 1, 9, 1, 9, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 9, 1, 1, 1, 3, 5, 9, 1, 9, 1, 3, 1, 9, 1, 9, 1, 9, 13, 7, 1, 27
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351544(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); prod(k=1,#f~,if(!(u%f[k,1]), f[k,1]^f[k,2], 1)); };

Formula

a(n) = Product_{p^e || A000203(n)} p^(e*[p divides A003961(n)]), where [ ] is the Iverson bracket, returning 1 if p is a divisor of A003961(n), and 0 otherwise. Here p^e is the largest power of prime p dividing sigma(n).
a(n) = A000203(n) / A351546(n).
For all n >= 1, a(n) is a multiple of A351545(n).

A351547 a(n) = sigma(n) / A351545(n).

Original entry on oeis.org

1, 1, 4, 7, 6, 4, 8, 15, 13, 2, 12, 28, 14, 8, 24, 31, 18, 13, 20, 6, 32, 4, 24, 12, 31, 14, 40, 56, 30, 8, 32, 63, 48, 2, 48, 91, 38, 20, 56, 90, 42, 32, 44, 84, 78, 8, 48, 124, 57, 31, 72, 98, 54, 40, 72, 120, 16, 10, 60, 24, 62, 32, 104, 127, 12, 16, 68, 14, 96, 16, 72, 195, 74, 38, 124, 140, 96, 56, 80, 186, 121
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351547(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); s/prod(k=1,#f~,if(!(u%f[k,1]) && (f[k,2]>=valuation(u,f[k,1])), f[k,1]^f[k,2], 1)); };

Formula

a(n) = A000203(n) / A351545(n).
a(n) = A351546(n) * A354997(n). - Antti Karttunen, Jul 09 2022

A354828 Denominators of Dirichlet inverse of fraction A003961(n) / sigma(n).

Original entry on oeis.org

1, 1, 4, 7, 6, 4, 8, 35, 208, 6, 12, 14, 14, 8, 24, 7595, 18, 208, 20, 3, 32, 12, 24, 7, 1116, 14, 832, 28, 30, 24, 32, 7595, 48, 18, 48, 728, 38, 20, 56, 15, 42, 32, 44, 42, 416, 24, 48, 1519, 3648, 1116, 72, 49, 54, 832, 72, 35, 16, 30, 60, 12, 62, 32, 1664, 33759775, 12, 48, 68, 63, 96, 48, 72, 182, 74, 38, 4464
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Crossrefs

Cf. A354827 (denominators).
Cf. also A349628, A354366.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA354827(n) = (A003961(n)/sigma(n));
    vDirInv = DirInverseCorrect(vector(up_to,n,AuxA354827(n)));
    A354828(n) = denominator(vDirInv[n]);
Previous Showing 11-18 of 18 results.