cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A349374 Dirichlet convolution of Kimberling's paraphrases (A003602) with squarefree part of n (A007913).

Original entry on oeis.org

1, 3, 5, 4, 8, 15, 11, 6, 12, 24, 17, 20, 20, 33, 42, 7, 26, 36, 29, 32, 58, 51, 35, 30, 29, 60, 34, 44, 44, 126, 47, 9, 90, 78, 94, 48, 56, 87, 106, 48, 62, 174, 65, 68, 110, 105, 71, 35, 54, 87, 138, 80, 80, 102, 146, 66, 154, 132, 89, 168, 92, 141, 153, 10, 172, 270, 101, 104, 186, 282, 107, 72, 110, 168, 167, 116
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347954, A347955, A347956, A349136, A349370, A349371, A349372, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * s[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A349374(n) = sumdiv(n,d,A003602(n/d)*core(d));

Formula

a(n) = Sum_{d|n} A003602(n/d) * A007913(d).

A349373 Dirichlet convolution of Kimberling's paraphrases (A003602) with Dirichlet inverse of Euler phi (A023900).

Original entry on oeis.org

1, 0, 0, -1, -1, 0, -2, -2, -1, 0, -4, 0, -5, 0, 2, -3, -7, 0, -8, 1, 3, 0, -10, 0, -3, 0, -2, 2, -13, 0, -14, -4, 5, 0, 8, 1, -17, 0, 6, 2, -19, 0, -20, 4, 5, 0, -22, 0, -5, 0, 8, 5, -25, 0, 14, 4, 9, 0, -28, -2, -29, 0, 8, -5, 17, 0, -32, 7, 11, 0, -34, 2, -35, 0, 4, 8, 23, 0, -38, 3, -3, 0, -40, -3, 23, 0, 14, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Cf. A347954, A347955, A347956, A349136, A349370, A349371, A349372, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.

Programs

  • Mathematica
    f[p_, e_] := (1 - p); d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003602(n) = (1+(n>>valuation(n,2)))/2;
    A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
    A349373(n) = sumdiv(n,d,A003602(n/d)*A023900(d));

Formula

a(n) = Sum_{d|n} A003602(n/d) * A023900(d).

A349380 Dirichlet convolution of A003415 (arithmetic derivative of n) with A349134 (Dirichlet inverse of Kimberling's paraphrases).

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 8, 4, 3, 1, 5, 1, 4, 3, 20, 1, 6, 1, 8, 4, 6, 1, 12, 7, 7, 14, 11, 1, 3, 1, 48, 6, 9, 5, 14, 1, 10, 7, 20, 1, 4, 1, 17, 8, 12, 1, 28, 10, 13, 9, 20, 1, 18, 7, 28, 10, 15, 1, 6, 1, 16, 11, 112, 8, 6, 1, 26, 12, 5, 1, 32, 1, 19, 11, 29, 8, 7, 1, 48, 46, 21, 1, 8, 10, 22, 15, 44, 1, 6, 9, 35, 16
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2021

Keywords

Comments

Dirichlet convolution of A349394 with A349432.
Dirichlet convolution with A349136 gives A300251.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A003415(n/d) * A349134(d).
a(n) = Sum_{d|n} A349394(n/d) * A349432(d).
Previous Showing 11-13 of 13 results.