cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A384088 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4.

Original entry on oeis.org

1, 8, 288, 18528, 1728000, 211687080, 32159822688, 5835397918336, 1231573968949248, 296447550279133320, 80158746419240852000, 24057027574081163030688, 7935414295799696292767232, 2853706409310576479751168168, 1111199574070700473937862463200, 465782420445680979210397280524800
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^4/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}]

Formula

a(n) ~ c * d^n * n! / n, where d = 29.85915450232266280267400661836716424701025678171993103713550551... and c = 0.415660498916272367812330643610916948922178337726778287649763513...

A383839 a(n) = [x^n] 1/(1 - n*x) * Product_{k=0..n-1} (1 + k*x)/(1 - k*x).

Original entry on oeis.org

1, 1, 10, 177, 4576, 156145, 6627006, 336562177, 19906794496, 1344082891761, 102012257669950, 8597688151223281, 796733925564191616, 80516951813773009249, 8812696026991760928766, 1038540275078155878285825, 131107274213106172807069696, 17652158052761888943436783009
Offset: 0

Views

Author

Seiichi Manyama, May 14 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, abs(stirling(n, k, 1))*stirling(k+n, n, 2));

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)| * Stirling2(k+n,n).
Previous Showing 11-12 of 12 results.