A377819 Powerful numbers that have no more than one even exponent in their prime factorization.
1, 4, 8, 9, 16, 25, 27, 32, 49, 64, 72, 81, 108, 121, 125, 128, 169, 200, 216, 243, 256, 288, 289, 343, 361, 392, 432, 500, 512, 529, 625, 648, 675, 729, 800, 841, 864, 961, 968, 972, 1000, 1024, 1125, 1152, 1323, 1331, 1352, 1369, 1372, 1568, 1681, 1728, 1849, 1944, 2000
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
With[{max = 2000}, Select[Union@ Flatten@Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], Count[FactorInteger[#][[;; , 2]], _?EvenQ] <= 1 &]]
-
PARI
is(k) = if(k == 1, 1, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> !(x%2), e) <= 1);
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) * (1 + Sum_{p prime} (p/(p^3-p+1))) = 1.84528389659572754387... .
Comments