A350840
Number of strict integer partitions of n with no adjacent parts of quotient 2.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0
The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
31 32 51 43 53 54 64 65 75 76
41 52 62 72 73 74 93 85
61 71 81 82 83 A2 94
431 432 91 92 B1 A3
531 532 A1 543 B2
541 641 651 C1
731 732 643
741 652
831 751
832
931
5431
The version for subsets of prescribed maximum is
A045691.
Versions for prescribed quotients:
A000045 = sets containing n with all differences > 2.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]
A350845
Heinz numbers of integer partitions with at least two adjacent parts of quotient 2.
Original entry on oeis.org
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 144, 147, 150, 156, 162, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258, 260, 264, 266, 270
Offset: 1
The terms and corresponding partitions begin:
6: (2,1)
12: (2,1,1)
18: (2,2,1)
21: (4,2)
24: (2,1,1,1)
30: (3,2,1)
36: (2,2,1,1)
42: (4,2,1)
48: (2,1,1,1,1)
54: (2,2,2,1)
60: (3,2,1,1)
63: (4,2,2)
65: (6,3)
66: (5,2,1)
72: (2,2,1,1,1)
78: (6,2,1)
84: (4,2,1,1)
90: (3,2,2,1)
96: (2,1,1,1,1,1)
The strict complement is counted by
A350840.
These partitions are counted by
A350846.
A000045 = sets containing n with all differences > 2.
A325160 ranks strict partitions with no successions, counted by
A003114.
Cf.
A000929,
A001105,
A018819,
A045690,
A045691,
A094537,
A154402,
A319613,
A323093,
A337135,
A342094,
A342095,
A342098,
A342191.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],MemberQ[Divide@@@Partition[primeptn[#],2,1],2]&]
Comments